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The one-dimensional Galerkin-truncated Burgers
equation, with both dissipation and noise terms
included, is studied using spectral methods. When
the truncation-scale Reynolds number Rmin is varied,
from very small values to order 1 values, the scale-
dependent correlation time τ (k) is shown to follow the
expected crossover from the short-distance τ (k) ∼ k−2

Edwards–Wilkinson scaling to the universal long-
distance Kardar–Parisi–Zhang scaling τ (k) ∼ k−3/2. In
the inviscid limit, Rmin → ∞, we show that the system
displays another crossover to the Galerkin-truncated
inviscid-Burgers regime that admits thermalized
solutions with τ (k) ∼ k−1. The scaling forms of the
time-correlation functions are shown to follow the
known analytical laws and the skewness and excess
kurtosis of the interface increments distributions are
characterized.

This article is part of the theme issue ‘Scaling the
turbulence edifice (part 2)’.

1. Introduction
Galerkin-truncated hydrodynamical systems, which retain
only a finite number of Fourier modes, have been studied
actively in fluid mechanics [1–5].

2022 The Author(s) Published by the Royal Society. All rights reserved.
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In his pioneering work [1] of 1952, T.D. Lee showed that these truncated systems satisfy
Liouville’s theorem and that, assuming ergodicity, there is energy equipartition among the
spectral modes. Later, Kraichnan [4] proposed a different approach for these absolute equilibrium
states by considering that the complex amplitudes of the Fourier modes followed a canonical
distribution that is controlled by the mean values of the invariants of the system. The
Galerkin-truncated hydrodynamical system that has been investigated most extensively is
the time-reversible Euler equation for a classical, ideal fluid [6–8], which can be studied
efficiently, in a spatially periodic domain, by the Fourier pseudospectral method [9,10]. Absolute-
equilibrium solutions have also been examined in a variety of hydrodynamical systems including
compressible flows [11], the Gross-Pitaevskii equation in both three and two dimensions [12,13],
and the Euler equation and ideal magnetohydrodynamics (MHD) in two dimensions [14].

These results on thermalization in hydrodynamical systems are well known in the fluid-
dynamics community, but less known than they deserve to be in the area of non-equilibrium
statistical mechanics. To bridge this gap between these related fields, we carry out a systematic
study of the relaxation to absolute equilibrium in the one-dimensional inviscid Burgers equation,
perhaps the simplest hydrodynamical system demonstrating absolute equilibration. The initial
stages of the thermalization are known to involve the formation of oscillatory structures, which
have been named tygers [15–17]. The typical relaxation time near the absolute equilibrium can be
studied conveniently via the scale-dependent correlation time τ (k), which can be computed from
the time-dependent correlation function. It is known to scale as τ (k) ∼ k−1 [18–20]. Note that the
same k−1-scaling law is known to take place in the truncated three-dimensional Euler equation
[6]. Thus τ (k) cannot be simply related to an eddy turnover time defined from the equilibrium
energy spectrum that scales as E(k) ∼ kd−1 in d-dimensions.

Adding noise and dissipation terms to the one-dimensional inviscid Burgers equation (see
equation (4.14) of reference [21]) transforms it into the Kardar–Parisi–Zhang (KPZ) equation [22–
25] that is well known in non-equilibrium statistical mechanics. The KPZ equation admits the
same exact equilibrium probability distribution as the inviscid Burgers equation.1 However, the
one-dimensional KPZ correlation time around equilibrium is known to have a k−3/2 scaling. The
different time-correlation scalings k−1 and k−3/2 around the same equilibrium for the inviscid
truncated Burgers equation and the KPZ equation are the main motivation for the present
work. Note that there is also a third (trivially linear) viscous type of scaling known as the
Edwards-Wilkinson [26] (EW) scaling k−2 that arises when the nonlinear term is negligible. In the
following, we will characterize the crossover behaviour between these different regimes in terms
of the Reynolds number estimated at the truncation scale. Let us stress that the dissipative and
inviscid truncated Burgers equation admit the same equilibrium only with the noise correlations
considered here. For studies of the one-dimensional Burgers equation with differently correlated
noises, see e.g. [27–31]; these studies concentrate on intermittency of equal-time structure
functions and not the time correlations we investigate.

The remainder of this paper is organized as follows. Section 2 contains the system’s
definitions, with special attention given to spectral truncation, conserved quantities and
stationary probabilities. Section 3 is devoted to our numerical results: after defining the
algorithms and physical parameters, the scalings of the correlation times and the distributions
of the interface increments are characterized. Finally, our conclusions are given in §4.

2. System definitions
We consider the randomly forced, generalized one-dimensional Burgers equation that is defined
by the following stochastic partial differential equation for the velocity field u(x, t) (e.g. [21–24,32–
35]):

∂tu + λu∂xu = ν∂xxu +
√

D∂xf , (2.1)

1In only one dimension. In dimensions greater than 1, the inviscid Burgers equations does not conserve the energy (e.g. [21]).
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where λ is the coefficient of the nonlinear term, ν is the kinematic viscosity, D a diffusion
coefficient and f is a zero-mean, Gaussian force with variance

〈f (x, t)f (x′, t′)〉 = 2πδ(x − x′)δ(t − t′). (2.2)

If we define u ≡ ∂xh, i.e.

h(x, t) =
∫ x

0
u(y, t) dy (2.3)

we obtain the KPZ equation

∂th + λ

2
(∂xh)2 = ν∂xxh +

√
Df . (2.4)

We contrast the following three cases in our study: (i) the deterministic, inviscid, one-dimensional
Burgers equation, with λ = 1, ν = 0, and D = 0; (ii) the Edwards–Wilkinson (EW) equation, with
λ = 0, ν > 0 and D > 0; and (iii) the KPZ equation, with λ > 0, ν > 0 and D > 0.

(a) Spectral truncation and conserved quantities
Henceforth, we consider 2π -periodic boundary conditions in x. We introduce the Fourier
representation

u(x, t) =
∞∑

k=−∞
û(k, t) exp(ikx), (2.5)

where the caret denotes a spatial Fourier transform, u(x, t) ∈ R, so û(−k, t) = û(k, t); complex
conjugation is indicated by the overline. Using

u2(x, t)
2

= 1
2

∞∑
n,p=−∞

ûn−p(t)ûp(t)einx, (2.6)

the unforced and inviscid Burgers equation (equation (2.1) with ν = 0, λ = 1 and D = 0) can be
written as

∂tû(k, t) = − ik
2

∞∑
p=−∞

ûk−p(t)ûp(t), (2.7)

which conserves the total energy

E = 1
2π

∫ 2π

0

u(x, t)2

2
dx

= 1
2

∞∑
k=−∞

|û(k, t)|2. (2.8)

Note that integrating by parts the nonlinear term in (2.1) shows that the integrals In(t) =∫2π
0 u(x, t)ndx are all conserved by the inviscid dynamics (2.7) (the energy corresponding to the

case n = 2).
Let us now spectrally truncate (or Galerkin truncate) this system. To do this, we need to enforce

that, for k > kmax, û(k, t) = 0 and ∂tû(k, t) = 0. To wit, we introduce the Galerkin projector P that
reads in Fourier space

PG[ûk] = θ (kmax − |k|)ûk, (2.9)

where θ (k) = 1, if k ≤ kmax and θ (k) = 0, if k > kmax. Galerkin truncation amounts to the
replacements u :=PG[u], u∂xu :=PG[u∂xu] and f :=PG[f ] in equation (2.1), thus reducing (2.7)
to a finite number of ordinary differential equations.
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The Galerkin-truncated version of (2.7) thus reads, for −kmax ≤ k ≤ kmax,

∂tû(k, t) = − ik
2

inf(kmax,k+kmax)∑
sup(−kmax,k−kmax)

ûk−p(t)ûp(t), (2.10)

or, in a more symmetrical form,

∂tû(k, t) = − ik
2

∑
p,q

δk,p+qθ (kmax − |p|)θ (kmax − |q|)ûp(t)ûq(t), (2.11)

where δ denotes the Kronecker symbol. Thus, the nonlinear truncated term explicitly reads:

Nk(û) = − ik
2

∑
p,q

δk,p+qθ (kmax − |k|)θ (kmax − |p|)θ (kmax − |q|)ûpûq. (2.12)

It is straightforward to check out that the nonlinear term (2.12) verifies the following relations:

0 =N0(û),

0 =
∑

k

û−kNk(û),

and 0 =
∑
k,p,q

δ−k,p+qθ (kmax − |p|)θ (kmax − |q|)ûpûqNk(û).

⎫⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎭

(2.13)

Thus, three conservation laws survive the Galerkin truncation and

P = û0,

E = 1
2

kmax∑
k=−kmax

|û(k, t)|2,

and H =
∑
k,p,q

δ−k,p+qθ (kmax − |k|)θ (kmax − |p|)θ (kmax − |q|)ûkûpûq

⎫⎪⎪⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎪⎪⎭

(2.14)

are still conserved after truncation.
The conserved quantities P and E are, respectively, the momentum and the energy of the

system. The third surviving conserved quantity H can be used to provide an explicit Hamiltonian
formulation of the truncated system. It is known to play a role in the thermalization dynamics
only for very special choices of the initial conditions [36].

In our direct numerical simulations, we use a standard Fourier pseudospectral method, with
dealiasing performed by the 2/3 rule. Clearly, such a pseudospectral method is identical to
a spectral Galerkin method (e.g. [9]). We use N collocation points and spectral truncation is
performed for k > kmax = [N/3], where [·] denotes the integer part. Note that with this choice
of dealiasing, the third conserved quantity H must be evaluated as PG[uPG[u2]]. If one instead
insists, as done in [18,19,36], to evaluate it simply as PG[u3] then the truncation must be performed
for k ≥ kmax = [N/4]. Both truncated system and conserved quantities are identical (when H is
evaluated correctly). Therefore, here we will use the 2/3 scheme that allows us to use more modes
for a given resolution.

(b) Stationary probability
The nonlinear truncated term (2.12) verifies the Liouville property

∑
k

∂Nk(û)
∂ûk

= 0. (2.15)

In the case of absolute equilibrium of the deterministic, inviscid, one-dimensional Burgers
equation truncated system, a standard argument (e.g. [1,4,5]) is that the microcanonical
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distribution

Pmc[u] = Z−1
mcδ(E(u) − E), (2.16)

when the number of degrees of freedom 2kmax + 1 is large enough, can be well approximated by
the canonical distribution

Psta[u] = Z−1
c e−βE, (2.17)

where Zmc and Zc denote normalization factors.
A direct way to proceed is to introduce the Liouville equation for the probability

P[{ûk, û∗
k }0≤k≤kmax ],

∂P

∂t
=

∑
0≤k≤kmax

∂

∂ûk
[−Nk(û)P] + c.c, (2.18)

where û∗
k = û−k is considered as an independent variable and c.c denotes complex conjugation.

It follows directly from energy conservation that (2.18) admits (2.17) as a stationary solution.
Note that the stationary distribution (2.17) is a white noise in space for u(x) and thus a

Brownian process for h(x).
In both the EW (λ = 0, ν > 0 and D > 0) and the KPZ cases (λ > 0, ν > 0 and D > 0), the

probability distribution P of the stochastic process defined by equations (2.1) and (2.2) and the
spectral truncation (2.9) can be shown to obey the following Fokker–Planck equation [37,38]:

∂P

∂t
=

∑
0≤k≤kmax

∂

∂ûk

[
−(λNk(û) − νk2ûk)P + Dk2 ∂P

∂û∗
k

]
+ c.c. (2.19)

Let us remark that (2.17) is also a stationary solution of (2.19). Indeed, the nonlinear term in the
Fokker–Planck equation can be treated exactly like its counterpart in the Liouville equation (2.18);
the remaining terms also cancel for the stationary distribution (2.17), because, in equilibrium, we
must have νk2ûk − βDk2ûk = 0, whence we get

D = ν

β
. (2.20)

Defining the r.m.s. velocity urms by averaging over the stationary distribution (2.17)

〈E〉 = u2
rms
2

= kmax + 1
β

, (2.21)

(see equations (2.8) and (2.9)) we find that

β = 2(kmax + 1)

u2
rms

(2.22)

and

D = νu2
rms

2(kmax + 1)
. (2.23)

As the equilibrium probability is determined, we now focus on the time-correlation functions

Γ (k, τ ) = 〈û∗
k (t)ûk(t + τ )〉t. (2.24)

In the KPZ case, with the Fokker–Planck equation (2.19), it is well known [21,22] that the existence
of a fluctuation dissipation theorem ensures that the associated response function has the same
characteristic time-scale as the equilibrium time correlation function. The same fluctuation-
dissipation relation (with statistical averaging over initial conditions) [39] also applies in the
inviscid noiseless case (2.18).
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3. Numerical results

(a) Algorithms
We use standard pseudo-spectral Fourier methods. FFTs are performed on N points and the
nonlinear term is truncated at kmax = N/3. In order to have a robust method that is also precise,
when there is no forcing and dissipation, we timestep by using a fourth order Runge–Kutta
(RK) method. For weak viscosities, the same RK timestep is used for the deterministic part
(nonlinear and dissipation) and the white noise is added independently, as an extra (explicit)
step. The timestep has thus to be smaller than a fraction of 1/(νk2

max) and 1/(urmskmax). For
large viscosities, we use instead the implicit method of reference [40]. The noise intensity D is
fixed by using equation (2.23). The initial data are set up as a Gaussian white noise in x with
given value of urms = √

2E. The time average of the correlation function (2.24) is performed over
the same time interval for all wavenumbers. The duration of a run is typically of a few of the
largest scale correlation time. At this point, statistical convergence is not optimal for the largest
scales. However, computations are performed in parallel for a number (typically Nrea = 128) of
independent realizations of the Gaussian initial conditions (2.17) and Gaussian white noise (2.2).
The resulting independent time-averaged correlation functions are further averaged over the Nrea

realizations. In this way, uniform convergence over the spectrum variable k is obtained.

(b) Physical parameters
Because of our choice of working with 2π periodic boundary conditions, the largest scale L in
our simulations is always fixed to L = 2π . The smallest available scale is resolution dependent
and related to the largest wavenumber kmax = [N/3] (equivalently to the collocation mesh size
�x = 2π/N). Thus, a given computation is parametrized by urms, kmax and ν. The initial data
used to start the time-integrations is always set to a random Gaussian field (see (2.17)) with the
same value of urms used to fix D to its viscosity-dependent value. Therefore, the ν = 0 (and D =
0) case amounts to integrating the inviscid truncated Burgers equation starting from absolute
equilibrium initial conditions and, when ν in non-zero, it is the full KPZ system (2.2) (with λ = 1)
that is integrated, also starting from the equilibrium distribution. Thus, in this latter case, one
expects to recover the KPZ scaling of the correlation-time in the limit of large spatial scales.

However, the speed of this approach will depend on the value of the parameters at small scale.
We introduce a scale-dependent Reynolds number

Re(k) = urms

νk
. (3.1)

The truncation-scale Reynolds number is given by Rmin = Re(kmax), thus Rmin = urms/νkmax, or

Rmin = 3
Nν

urms. (3.2)

On general grounds, one expects to see EW scaling when Rmin � 1 and recover the inviscid
truncated Burgers case in the Rmin → ∞ limit that corresponds to ν = 0. In what follows, we will
determine the time-scale by fixing urms = 1 and varying ν. We will discuss the crossover in terms
of the dimensionless parameter Rmin.

(c) Scalings of correlation times
We first study the behaviour of the correlation function Γ (k, t) by making a series of runs at
resolution N = 1024 (kmax = 341), urms = 1 and various viscosities.

Scaling behaviour is particularly apparent when represented in the (log(t), log(k)) plane.
Indeed, in this logarithmic representation, scaling simply corresponds to equal values of the
correlation Γ (k, t) along straight lines.
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Figure 1. Contour plots of the correlation functionΓ (k, t)/Γ (k, 0) represented in the natural logarithm (log(k), log(t)) plane;
(a) inviscid Burgers scaling obtained at ν = 0; (b): KPZ scaling obtained at ν = 3.0 × 10−3;Γ (k, t)/Γ (k, 0) contour levels
are drawn from 0.0 to 0.9 and spaced by 0.1 The dashed black lines indicate (a) t ∼ k−1 and (b) t ∼ k−3/2. The points t =
τ1/2(k), computed independently usingΓ (k, τ1/2)= 1

2Γ (k, 0), are indicated by red circles. (Online version in colour.)

Figure 1 shows contour plots of the normalized correlation function Γ̃ (k, t) = Γ (k, t)/Γ (k, 0).
The red circles2 indicate the points t = τ1/2(k). They were computed independently, for each k, by
solving the equation Γ (k, τ1/2) = 1

2 Γ (k, 0).
Figure 1a shows the inviscid Burgers scaling that is obtained for ν = 0, corresponding to an

infinite truncation-scale Reynolds number Rmin. The black dashed line indicates the theoretical t ∼
k−1 law. On figure 1b, the KPZ scaling obtained at ν = 3.0 × 10−3 is displayed, corresponding to a
truncation-scale Reynolds number Rmin = 0.98. The black dashed lines indicating the theoretical
t ∼ k−3/2 law.

Figure 2a demonstrates the EW scaling that is obtained with ν = 2.4 × 10−2, corresponding to
a truncation-scale Reynolds number of Rmin = 0.12. The viscous t ∼ k−2 EZ law is indicated by
the black dashed line. Figure 2b shows the crossover in the scaling of the decorrelation times
τ1/2(k) versus k for various values of the viscosity ν. The crossover behaviour is clearly visible in
figure 3 that displays the same data compensated by k3/2, so that KPZ scaling corresponds to a
horizontal line. The red markers correspond to the EW to KPZ transition with various values
of viscosities in geometric progression corresponding to a truncation-scale Reynolds number:
Rmin = 0.12, Rmin = 0.24, Rmin = 0.48 and Rmin = 0.98. The green markers correspond to the KPZ
to inviscid transition, with various viscosities, also in geometric progression corresponding to a
truncation-scale Reynolds number: Rmin = 1.96, Rmin = 3.91, Rmin = 7.71, Rmin = 15.4, Rmin = 31.2,
Rmin = 62.3, Rmin = 124.6 and Rmin = ∞ . The EW k−2 scaling law and the KPZ k−3/2 scaling are
indicated by solid lines and the inviscid k−1 scaling is denoted by a dashed line.

Figure 4 shows the scaling form of the normalized correlation functions Γ (k, t)/Γ (k, 0) versus
the rescaled wavenumber, with the same conditions as in figures 1–3.

The left panel shows the KPZ correlation (obtained at ν = 0.003), plotted versus the rescaled
variable k(t/7.0)2/3 for various values of k. The theoretical correlation function, computed in [41],
is shown as a solid black line. The inset provides details on the change of sign of the correlation.

The right panel displays the inviscid (ν = 0) correlation versus the rescaled variable kt, for
various values of k. The theoretical short-time parabolic behaviour is shown as a black continuous
curve. The inset shows short-times details. The inviscid parabolic law can be obtained by the
following arguments. Starting from the equilibrium correlation functions

〈
û(k, t)û(k′, 0)

〉
, we can

define the time scale τC as the parabolic decorrelation time

τ 2
C∂tt

〈
û(k, t)û(k′, 0)

〉
|t=0 = 〈

û(k, 0)û(k′, 0)
〉
, (3.3)

2Red circles standing right on top of the 0.5 contour line validate the interpolation scheme that we use to draw the contour
lines in the logarithmic representation from the equally spaced in time and wavenumber raw data for Γ (k, t).
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Figure 2. (a) Contour plots of the correlation function Γ (k, t)/Γ (k, 0) represented in the natural logarithm (log(k), log(t))
plane for the EW scaling obtained at ν = 2.4 × 10−2; contour levels are drawn from 0.0 to 0.9 and spaced by 0.1. The dashed
black lines indicate t ∼ k−2. The points t = τ1/2(k), computed independently using Γ (k, τ1/2)= 1

2Γ (k, 0), are indicated
by red circles. (b) Crossover in the scaling of the decorrelation time τ1/2: τ1/2 versus k. Red markers correspond to the EW
to KPZ transition: ν = 2.4 × 10−2: +, ν = 1.2 × 10−2: o, ν = 6.0 × 10−3: asterisk and ν = 3.0 × 10−3: square. Green
markers correspond to the KPZ to inviscid transition: ν = 1.5 × 10−3: +, ν = 7.5 × 10−4: o, ν = 3.8 × 10−4: asterisk,
ν = 1.9 × 10−4: square, ν = 9.4 × 10−5: diamond, ν = 4.7 × 10−5: pentagram, ν = 2.3 × 10−5: hexagram, and ν =
0: cross. Scaling laws are indicated by solid lines: EW k−2 and KPZ k−3/2. The new inviscid k−1 scaling is denoted by a dashed
line. Runs performed with kmax = 341 and urms = 1. (Online version in colour.)
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Figure 3. Crossover in the scaling of the decorrelation time τ1/2 for the same conditions as in figure 2b, but compensated by
k3/2: k3/2τ1/2 versus k. Red markers correspond to the EW to KPZ transition: ν = 2.4 × 10−2: +, ν = 1.2 × 10−2: o, ν =
6.0 × 10−3: asterisk and ν = 3.0 × 10−3: square. Green markers correspond to the KPZ to inviscid transition: ν = 1.5 ×
10−3: +, ν = 7.5 × 10−4: o, ν = 3.8 × 10−4: asterisk, ν = 1.9 × 10−4: square, ν = 9.4 × 10−5: diamond, ν = 4.7 ×
10−5: pentagram, ν = 2.3 × 10−5: hexagram, and ν = 0: cross. Scaling laws are indicated by solid lines: EW k−2 and KPZ
k−3/2. The new inviscid k−1 scaling is denoted by a dashed line. Runs performedwith kmax = 341 and urms = 1. (Online version
in colour.)

time translation invariance allows us to express the second-order time derivative as

− 〈
∂tû(k, t)∂t′ û(k′, t′)

〉
|t=t′=0 . (3.4)
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Figure 4. Scaling of correlation functionsΓ (k, t)/Γ (k, 0) versus the rescaled wavenumber. (a) KPZ (ν = 0.003) correlation
versus k(t/7.0)2/3 (o: k = 4, diamond: k = 8, square: k = 16, v: k = 32 and +: k = 64) compared with the theoretical
correlation function computed in [41] shown by a solid line (the inset shows the change of sign of the theoretical correlation).
(b) Inviscid (ν = 0) correlation versus kt (o: k = 8, diamond: k = 16, square: k = 32, v: k = 64 and +: k = 128) compared
with the theoretical short-time parabolic behaviour (see inset and equation (3.5)). Computations were performed with kmax =
341 and urms = 1. (Online version in colour.)

Using expressions (2.11) for the time derivatives reduces the evaluation of τC to that of an equal-
time fourth-order moment of a Gaussian field with correlation 〈û(k, t)û(−k, t)〉 = u2

rms/(2kmax +
1). The only non-vanishing contribution is a one loop graph [33,42]. The correlation time τC

associated with wavenumber k is found [6,20] in this way to obey the simple scaling law

τC =
√

2
kurms

, (3.5)

and this time scale is proportional to the eddy turnover time [18] at wavenumber k.
It is apparent from the figure that our numerical data obey the theoretical predictions.

(d) Distributions of the interface increments
The seminal work of Prähofer & Spohn [43] was recently referred to as ‘the 2nd KPZ Revolution’
[24]. It has led to a new set of studies of the one-dimensional KPZ universality class [25,32,44–48].
In particular, [49] notes that, at point x and for large t

δh = h(x, t) − h(x, 0) ≈ v∞t + (Γ t)βKPZχβ + o(tβKPZ ), for t → ∞, (3.6)

where the parameters Γ and v∞ depend on the model, and βKPZ = 1/3. Furthermore, χβ is a
random variable distributed according to different (Tracy-Widom) distributions [50] for different
initial conditions. For the problem we study, we use Brownian initial data, so we expect (see [49])
to find a Baik-Rains [51] distribution.

Figure 5 shows the evolution of the distributions of the interface increments δh computed with
kmax = 682 and urms = 1. Figure 5a displays the probability distribution functions of δh at various
times and ν = 3.0 × 10−3. The solid black curve indicates the theoretical probability distribution
function of [32]. Figure 5b shows the time evolution of the skewness S (in green) and excess
kurtosis K − 3 (in red) at various viscosities.

Figure 6 displays the same data, with a change of sign for the skewness (in order to be
comparable with fig. 3 of [49]). Our results indicate a tendency for the viscous run to converge
towards the theoretically predicted values, while the inviscid computations only display power
law behaviour for the skewness and the excess flatness.

It is apparent on figures 5 and 6 that the theoretically predicted Baik–Rains values for skewness
and kurtosis seem to match best the intermediate-viscosity numerical results (square markers:
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Figure 5. (a) Probability distribution functions of the interface increments δh at times t = 0.5: +, t = 1: o, t = 2: asterisk,
t = 4: square and t = 8: diamond, with ν = 3.0 × 10−3, kmax = 682 and urms = 1; (b) time evolution of the skewness
(green) and excess kurtosis (red) at various viscosities in log-log scales. The solid black lines indicate the theoretical results
of reference [32]. The markers correspond to: inviscid (ν = 0): +, ν = 3.8 × 10−4: o, ν = 7.5 × 10−4: asterisk, ν =
1.5 × 10−3: square, ν = 3.0 × 10−3: diamond, ν = 6.0 × 10−3: pentagram, ν = 1.2 × 10−2: hexagram. (Online version
in colour.)
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Figure 6. Time evolution of the skewness (green) and excess kurtosis (red) at various viscosities in log-lin scales (same
conditions as in figure 5b, with a change of sign for the skewness). The solid black lines indicate the theoretical results of
[32]. Themarkers correspond to: inviscid (ν = 0):+,ν = 3.8 × 10−4: o,ν = 7.5 × 10−4: asterisk,ν = 1.5 × 10−3: square,
ν = 3.0 × 10−3: diamond, ν = 6.0 × 10−3: pentagram, ν = 1.2 × 10−2: hexagram. (Online version in colour.)

ν = 1.5 × 10−3). The corresponding truncation-scale Reynolds number (see equation (3.2)) is
Rmin = 0.98. As the runs were performed with a fixed ratio of largest to smallest scale (resolution
N = 2048), it is understandable that, in the limit of very small Rmin, the results should go to the
Gaussian EW limit of zero skewness and excess kurtosis. This simply explains the trends apparent
on the figures: short-time skewness and excess kurtosis are too small for small Rmin and too large
for large Rmin. They however seem to converge, for large times, toward the theoretical values as
long as Rmin remains of order unity. Note that the skewness and kurtosis are known to converge
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very slowly with resolution (e.g. [49]) and a precise quantification of these trends therefore needs
higher resolution and longer runs and is well beyond the scope of the present paper.

4. Conclusion
By using pseudospectral numerical simulations of the one-dimensional Galerkin-truncated
Burgers equation, with noise and dissipation (2.2), we have reproduced the very well known
properties of the one-dimensional KPZ universality class such as the k−3/2 scaling of the
correlation time, the known analytical forms for the rescaled time-correlation function and the
rescaled interface increments probability distribution function.

We have characterized a new crossover, controlled by the truncation-scale Reynolds number
Rmin, towards an inviscid regime with correlation time scaling as k−1. This new regime
corresponds to the absolute equilibrium solutions of the inviscid noiseless Burgers equation. To
obtain this regime, it is crucial that the numerical scheme exactly conserves the invariant energy of
the system. This inviscid regime should also be present in finite-difference schemes, provided that
they also conserve the invariants (see the discussions in [18,19]). On general grounds, one expects
that any model within the one-dimensional KPZ universality class could also exhibit this new
crossover provided that it also admits exact conservation laws in some well-defined non-dissipative
limit.

This new regime might be amenable to a renormalization-group analysis, which would have,
in addition to the known [22] KPZ stable fixed point and EW unstable fixed point, a new fixed
point corresponding to the inviscid regime. This is left for a future work.

Data accessibility. This article has no additional data.
Authors’ contributions. All authors participated in the analytical computations. M.B. and R.P. drafted the
manuscript. M.B. and C.C. performed the numerical simulations. C.C., R.P. and M.B. read, edited and
approved the manuscript. E.T. was instrumental in the early definition of the research project and the
corresponding analytical computations. He sadly passed away in 2020 and could not therefore edit and
approve the final manuscript.
Competing interests. We declare we have no competing interests.
Funding. This work was supported by the French Agence nationale de la recherche (ANR QUTE-HPC project
no. ANR-18-CE46-0013).
Acknowledgements. This work was granted access to HPC resources of MesoPSL financed by Region Ile de France
and the project Equip@Meso (reference ANR-10-EQPX-29-01) of the programme Investissements d’Avenir
supervised by Agence Nationale pour la Recherche. M.B. and R.P. thank the Indo-French Centre for Applied
Mathematics for financial support. R.P. also thanks CSIR, UGC and DST India for support and Dipankar
Roy for discussions. C.C., E.T. and M.B. acknowledge the support of the Laboratoire International Associé
‘Matière: Structure et Dynamique’ LIA-MSD. C.C. wishes to acknowledge the support of FONDECYT (CL),
no. 1200357 and Universidad de los Andes (CL) through FAI initiatives. Uriel Frisch has been a leader in
research on turbulence for several decades. He has inspired many researchers in this area, especially M.B.
and R.P., who have worked closely with him. We wish him many more years of active research and we look
forward to working with him.

References
1. Lee TD. 1952 On some statistical properties of hydrodynamical and magneto-hydrodynamical

fields. Q. Appl. Math. 10, 69–74. (doi:10.1090/qam/1952-10-01)
2. Hopf E. 1952 Statistical hydromechanics and functional calculus. J. Ration. Mech. Anal. 1,

87–123.
3. Kraichnan R. 1955 On the statistical mechanics of an adiabatically compressible fluid. J. Acoust.

Soc. Am. 27, 438–441. (doi:10.1121/1.1907924)
4. Kraichnan R. 1973 Helical turbulence and absolute equilibrium. J. Fluid Mech. 59, 745–752.

(doi:10.1017/S0022112073001837)
5. Orszag S. 1977 Statistical theory of turbulence. In Les Houches 1973: fluid dynamics (eds R

Balian, JL Peube). New York, NY: Gordon and Breach.

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

31
 J

an
ua

ry
 2

02
2 

http://dx.doi.org/10.1090/qam/1952-10-01
http://dx.doi.org/10.1121/1.1907924
http://dx.doi.org/10.1017/S0022112073001837


12

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210090

...............................................................

6. Cichowlas C, Bonaïti P, Debbasch F, Brachet M. 2005 Effective dissipation
and turbulence in spectrally truncated Euler flows. Phys. Rev. Lett. 95, 264502.
(doi:10.1103/PhysRevLett.95.264502)

7. Krstulovic G, Mininni PD, Brachet ME, Pouquet A. 2009 Cascades, thermalization,
and eddy viscosity in helical Galerkin truncated Euler flows. Phys. Rev. E 79, 1–5.
(doi:10.1103/PhysRevE.79.056304)

8. Verma MK. 2020 Boltzmann equation and Hydrodynamic equations: their equilibrium and
non-equilibrium behaviour. Phil. Trans. R. Soc. A 378, 20190470. (doi:10.1098/rsta.2019.0470)

9. Gottlieb D, Orszag SA. 1977 Numerical analysis of spectral methods. Philadelphia: SIAM.
10. Canuto C, Hussani MY, Quarteroni A, Zang TA. 1988 Spectral methods in fluid dynamics. New

York, NY and Berlin, Germany: Springer.
11. Krstulovic G, Cartes C, Brachet M, Tirapegui E. 2009 Generation and charecterization

of absolute equilibrium of compressible flows. Int. J. Bifurcation Chaos 19, 3445–3459.
(doi:10.1142/S021812740902489X)

12. Krstulovic G, Brachet ME. 2011 Dispersive bottleneck delaying thermalization of turbulent
Bose-Einstein condensates. Phys. Rev. Lett. 106, 115303. (doi:10.1103/PhysRevLett.106.115303)

13. Shukla V, Brachet M, Pandit R. 2013 Turbulence in the two-dimensional Fourier-truncated
Gross-Pitaevskii equation. New J. Phys. 15, 113025. (doi:10.1088/1367-2630/15/11/113025)

14. Krstulovic G, Brachet M-E, Pouquet A. 2011 Alfvén waves and ideal two-
dimensional Galerkin truncated magnetohydrodynamics. Phys. Rev. E 84, 016410.
(doi:10.1103/PhysRevE.84.016410)

15. Ray SS, Frisch U, Nazarenko S, Matsumoto T. 2011 Resonance phenomenon for
the Galerkin-truncated Burgers and Euler equations. Phys. Rev. E 84, 016301.
(doi:10.1103/PhysRevE.84.016301)

16. Banerjee D, Ray SS. 2014 Transition from dissipative to conservative dynamics in equations of
hydrodynamics. Phys. Rev. E 90, 041001. (doi:10.1103/PhysRevE.90.041001)

17. Ray SS. 2015 Thermalized solutions, statistical mechanics and turbulence: an overview of
some recent results. Pramana 84, 395–407. (doi:10.1007/s12043-014-0928-x)

18. Majda AJ, Timofeyev I. 2000 Remarkable statistical behavior for truncated Burgers-Hopf
dynamics. Proc. Natl Acad. Sci. USA 97, 12 413–12 417. (doi:10.1073/pnas.230433997)

19. Majda A, Timofeyev I. 2002 Statistical mechanics for truncations of the Burgers-Hopf
equation: a model for intrinsic stochastic behavior with scaling. Milan J. Math. 70, 39–96.
(doi:10.1007/s00032-002-0003-9)

20. Cichowlas C. 2005 Truncated Euler equation: from complex singularities dynamics to
turbulent relaxation. Ph.D. thesis, Universite Pierre et Marie Curie—Paris VI, https://tel.
archives-ouvertes.fr/tel-00070819/document.

21. Forster D, Nelson DR, Stephen MJ. 1977 Large-distance and long-time properties of a
randomly stirred fluid. Phys. Rev. A 16, 732–749. (doi:10.1103/PhysRevA.16.732)

22. Kardar M, Parisi G, Zhang Y-C. 1986 Dynamic scaling of growing interfaces. Phys. Rev. Lett.
56, 889–892. (doi:10.1103/PhysRevLett.56.889)

23. Halpin-Healy T, Zhang Y-C. 1995 Kinetic roughening phenomena, stochastic growth, directed
polymers and all that. Aspects of multidisciplinary statistical mechanics. Phys. Rep. 254, 215–
414. (doi:10.1016/0370-1573(94)00087-J)

24. Halpin-Healy T, Takeuchi KA. 2015 A KPZ cocktail-shaken, not stirred. . . . J. Stat. Phys. 160,
794–814. (doi:10.1007/s10955-015-1282-1)

25. Quastel J, Spohn H. 2015 The one-dimensional KPZ equation and its universality class. J. Stat.
Phys. 160, 965–984. (doi:10.1007/s10955-015-1250-9)

26. Edwards SF, Wilkinson DR. 1982 The surface statistics of a granular aggregate. Proc. R. Soc.
Lond. A 381, 17–31. (doi:10.1098/rspa.1982.0056)

27. Chekhlov A, Yakhot V. 1995 Kolmogorov turbulence in a random-force-driven Burgers
equation: anomalous scaling and probability density functions. Phys. Rev. E 52, 5681–5684.
(doi:10.1103/PhysRevE.52.5681)

28. Hayot F, Jayaprakash C. 1996 Multifractality in the stochastic Burgers equation. Phys. Rev. E
54, 4681–4684. (doi:10.1103/PhysRevE.54.4681)

29. Boldyrev SA. 1997 Velocity-difference probability density functions for Burgers turbulence.
Phys. Rev. E 55, 6907–6910. (doi:10.1103/PhysRevE.55.6907)

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

31
 J

an
ua

ry
 2

02
2 

http://dx.doi.org/10.1103/PhysRevLett.95.264502
http://dx.doi.org/10.1103/PhysRevE.79.056304
http://dx.doi.org/10.1098/rsta.2019.0470
http://dx.doi.org/10.1142/S021812740902489X
http://dx.doi.org/10.1103/PhysRevLett.106.115303
http://dx.doi.org/10.1088/1367-2630/15/11/113025
http://dx.doi.org/10.1103/PhysRevE.84.016410
http://dx.doi.org/10.1103/PhysRevE.84.016301
http://dx.doi.org/10.1103/PhysRevE.90.041001
http://dx.doi.org/10.1007/s12043-014-0928-x
http://dx.doi.org/10.1073/pnas.230433997
http://dx.doi.org/10.1007/s00032-002-0003-9
https://tel.archives-ouvertes.fr/tel-00070819/document
https://tel.archives-ouvertes.fr/tel-00070819/document
http://dx.doi.org/10.1103/PhysRevA.16.732
http://dx.doi.org/10.1103/PhysRevLett.56.889
http://dx.doi.org/10.1016/0370-1573(94)00087-J
http://dx.doi.org/10.1007/s10955-015-1282-1
http://dx.doi.org/10.1007/s10955-015-1250-9
http://dx.doi.org/10.1098/rspa.1982.0056
http://dx.doi.org/10.1103/PhysRevE.52.5681
http://dx.doi.org/10.1103/PhysRevE.54.4681
http://dx.doi.org/10.1103/PhysRevE.55.6907


13

royalsocietypublishing.org/journal/rsta
Phil.Trans.R.Soc.A380:20210090

...............................................................

30. Verma MK. 2000 Intermittency exponents and energy spectrum of the Burgers and KPZ
equations with correlated noise. Physica A 277, 359–388. (doi:10.1016/S0378-4371(99)00544-0)

31. Mitra D, Bec J, Pandit R, Frisch U. 2005 Is multiscaling an artifact in the stochastically forced
Burgers equation? Phys. Rev. Lett. 94, 194501. (doi:10.1103/PhysRevLett.94.194501)

32. Halpin-Healy T, Lin Y. 2014 Universal aspects of curved, flat, and stationary-state Kardar-
Parisi-Zhang statistics. Phys. Rev. E 89, 010103. (doi:10.1103/PhysRevE.89.010103)

33. Frisch U. 1995 Turbulence: the legacy of A. N. Kolmogorov. Cambridge, UK: Cambridge
University Press.

34. Frisch U, Bec J. 2001 Burgulence. In New trends in turbulence turbulence (eds M Lesieur, A
Yaglom, F. David), pp. 341–383. Berlin, Heidelberg: Springer.

35. Bec J, Khanin K. 2007 Burgers turbulence. Phys. Rep. 447, 1–66. (doi:10.1016/j.
physrep.2007.04.002)
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