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Abstract

We present high-performance and high-accuracy numerical simulations of quantum turbu-
lence modelled by the Gross-Pitaevskii equation for the time-evolution of the macroscopic
wave function of the system. The hydrodynamic analogue of this model is a flow in
which the viscosity is absent and all rotational flow is carried by quantized vortices with
identical topological line-structure and circulation. Numerical simulations start from
an initial state containing a large number of quantized vortices and follow the chaotic
vortex interactions leading to a vortex-tangle turbulent state. The Gross-Pitaevskii
equation is solved using a parallel (MPI-OpenMP) code based on a pseudo-spectral
spatial discretization and second order splitting for the time integration. We define four
quantum-turbulence simulation cases based on different methods used to generate initial
states: the first two are based on the hydrodynamic analogy with classical Taylor-Green
and Arnold-Beltrami-Childress vortex flows, while the other two methods use a direct
manipulation of the wave function by generating a smoothed random phase field, or
seeding random vortex-ring pairs. The dynamics of the turbulent field corresponding to
each case is analysed in detail by presenting statistical properties (spectra and structure
functions) of main quantities of interest (energy, helicity, etc.). Some general features
of quantum turbulence are identified, despite the variety of initial states. Numerical
and physical parameters of each case are presented in detail by defining corresponding
benchmarks that could be used to validate or calibrate new Gross-Pitaevskii codes. The
efficiency of the parallel computation for a reference case is also reported.

Keywords: Quantum Turbulence, Gross-Pitaevskii equation, Taylor-Green, ABC,
parallel computing, spectral method.
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1. Introduction

The study of quantum fluids, realized in superfluid helium and atomic Bose-Einstein
condensates (BEC), has become a central topic in various fields of physics, such as low
temperature physics, fluid dynamics of inviscid flows, quantum physics, statistical physics,
cosmology, etc. One of the striking features of quantum fluids is the nucleation of vortices
with quantized (fixed) circulation, when an external forcing is applied (rotation, stirring,
etc). The observation of quantized vortices, as a signature of the superfluid (zero-viscosity)
nature of these flow systems, was extensively explored in different experimental settings
of superfluid helium or BEC. Configurations with a large number of quantized vortices
tangled in space can evolve to Quantum Turbulence (QT), generally referred to as vortex
tangle turbulence. While QT in superfluid helium has been largely studied in the last
two decades (see dedicated volumes Vinen and Niemela (2002); Barenghi et al. (2001);
Barenghi and Sergeev (2008); Halperin and Tsubota (2009)), only recent experimental
and theoretical studies (Henn et al., 2010; Seman et al., 2011; Kwon et al., 2014; Navon
et al., 2016) reported different possible routes to QT in BEC.

A promising path of research in exploring QT is based on the analogy with classical
turbulence (CT), observed in conventional viscous fluids and governed by the Navier-
Stokes equations. Classical turbulent flows are characterized by the chaotic motion of
vortical eddies that populate a continuous hierarchy of intensities and scales, from the
large (integral) scale of the flow, down to the Kolmogorov’s viscous length scale. The
classical turbulent cascade of energy between scales is characterised by the Kolmogorov’s
power-law spectrum (Frisch, 1995) in the regime of vanishing viscosity (i. e. large to
infinite Reynolds numbers). Quantum turbulence appears then as an equivalent regime,
since superfluids are assimilated to flows with zero viscosity. Both finite- and zero-viscosity
regimes can be experimentally obtained in liquid helium by changing the temperature:
above the lambda transition temperature (2.17K) the liquid is normal (viscous) and
well below it is a pure superfluid. Experimental measurements in superfluid helium-4 at
temperatures below 2K (Salort et al., 2012) provided indeed evidence of Kolmogorov’s
law for the kinetic energy cascade. However, vortex interaction mechanisms are different
in the two types of turbulence. Unlike classical vortex eddies, vortices in QT are identical
topological line defects in the fluid density field and their circulation is quantized (in units
of Planck’s constant over the atomic mass). In QT, bundles of quantum line vortices play
the role of classical vortex eddies. Since visualisations in QT experiments are not yet
enough precise to provide an accurate image of vortex interactions, numerical simulations
are then needed. The vortex filament (VF) and the Gross-Pitaevskii (GP) models are
used in the literature to numerically explore vortex interactions mechanisms in QT. The
VF model represents quantized vortices as infinitely thin lines and follows their evolution
by integrating the Biot-Savart-Laplace law over the vortex filament tangle. This model
proved very useful in studying superfluid helium-4 (Tsubota et al., 2017). The GP model
is the simplest mathematical model for a superfluid at zero-temperature and it will be the
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focus of this paper. It can be also regarded as a theoretical and numerical framework used
to investigate the inviscid limit of a fully-developed CT. For a comprehensive description
of different models of QT, see recent reviews by Halperin and Tsubota (2009); Brachet
(2012); Barenghi et al. (2014); Tsubota et al. (2017).

The Gross-Pitaevskii equation (GPE) is a nonlinear Schrödinger equation with cubic
nonlinearity. It describes, in the theoretical limit of absolute zero temperature, the time
evolution of the macroscopic complex wave function ψ (identical for all particles) defining
a weakly interacting Bose system. Consequently, the GP model naturally applies to
numerical studies of QT in Bose-Einstein condensates (Kobayashi and Tsubota, 2008).
The relevance of the GPE for describing QT in superfluid helium is discussed in Section
3.3. For general QT flows, the GP model offers the advantage that quantized vortices
appear naturally as topological line defects, resulting from the U(1) symmetry breaking
of the phase shift of ψ. Subsequent vortex phenomena (reconnection, annihilation) are
intrinsically described by the model. Supplementary phenomenological models are needed
in the VF approach to take into account the same vortex mechanisms. As a consequence,
QT simulations based on the GPE (denoted hereafter as GPE-QT) were largely used
in the literature to study vortex interactions and statistical properties of QT in the
zero-temperature limit.

There are several challenges when setting a numerical simulation to investigate GPE-
QT: (i) generate a physically and mathematically sound initial state with many quantized
vortices that finally evolve to a statistically steady state of QT, (ii) use accurate numerical
methods that preserve the invariants of the GPE when long time-integration is necessary,
(iii) design numerical codes affording large grid resolutions, necessary to accurately capture
the dynamics of vortices and (iv) compute appropriate (statistical) diagnostic tools to
analyze the superfluid flow evolution.

We use in this contribution a modern parallel (MPI-OpenMP) numerical code satisfying
the requirements (ii) and (iii). The code is called GPS (Gross-Pitaevskii Simulator)
(Parnaudeau et al., 2015) and is based on a Fourier-spectral space discretization and
up-to-date numerical methods: a semi-implicit backward-Euler scheme with Krylov
preconditioning for the stationary GP equation (Antoine and Duboscq, 2014) and various
schemes (Strang splitting, relaxation, Crank-Nicolson) for the real-time GP equation
(Antoine et al., 2013). The GPS code offers a solid framework to address in detail
challenges (i) and (iv), for which we review previous models and bring new contributions.

A great deal of attention has been lately devoted to the development of accurate
numerical schemes to solve different forms of the GPE, from the classical (stationary or
time-dependent) GPE, to systems of coupled GPEs and more recent formulations (e. g.
with non-local or high-order interactions). For recent reviews of numerical methods for
GPE, see Minguzzi et al. (2004); Bao (2006); Bao and Cai (2013); Antoine et al. (2013);
Bao (2014). Several software packages for solving the GPE were deposited in the CPC
Program Library. The spatial discretization is generally based on spectral (Dion and
Cancès, 2007; Caliari and Rainer, 2013; Antoine and Duboscq, 2014, 2015), finite-elements
(Marojević et al., 2016; Vergez et al., 2016) or finite-difference (Muruganandam and
Adhikari, 2009; Vudragović et al., 2012; Caplan, 2013; Kong et al., 2014; Hohenester,
2014; Kishor Kumar et al., 2019) methods. Provided programs are written in Fortran
(Dion and Cancès, 2007; Muruganandam and Adhikari, 2009), C (Vudragović et al., 2012;
Caplan, 2013), Matlab (Caliari and Rainer, 2013; Caplan, 2013; Antoine and Duboscq,
2014; Hohenester, 2014; Antoine and Duboscq, 2015), FreeFem++ (Vergez et al., 2016)
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or C and Fortran with OpenMP (Kishor Kumar et al., 2019). None of these programs
deal with QT simulations, but can eventually be extended to perform such simulations
using the procedures explained in this paper.

As in classical turbulence, the numerical and physical accuracy of the initial condition
is crucial in computing properties of numerically generated QT. Using the hydrodynamic
analogy for the GP model (through the Madelung transform, as explained below), pi-
oneering numerical simulations of GP-QT (Nore et al., 1993, 1997a; Abid et al., 2003)
suggested initial conditions and statistical analysis tools inspired from CT. A velocity
field, derived from the well-known classical flow with Taylor-Green (TG) vortices, was
imposed to the superfluid flow. An initial wave function, with nodal lines correspond-
ing to vortex lines of the velocity, was thus generated. This initial wave function was
then used in the Advective Real Ginzburg-Landau equation (ARGLE), equivalent to the
imaginary-time GP equation with Galilean transformation (see also below), to reduce
the acoustic emission of the initial field. The result of the ARGLE procedure was finally
used as initial field for the time-dependent GP simulation. A similar approach was more
recently used by replacing the TG vortices with the Arnold-Beltrami-Childress (ABC)
classical vortex flow (Clark di Leoni et al., 2016, 2017). If this approach is well suited
to control the hydrodynamic characteristics of the initial superfluid flow (Mach number,
helicity), it involves supplemental technicalities and computations through the ARGLE
procedure. We suggest in this paper two new approaches to generate the initial condition
for the GP-QT simulations, based on the direct manipulation of the wave function. The
ARGLE procedure is thus avoided. The first method prescribes a smoothed random-phase
(SRP) for the wave function, while the second one generates random vortex rings (RVR).
The two new methods, which are simple to implement, are shown to develop QT fields
with similar statistical properties as those obtained using the TG or ABC classical initial
conditions. Nevertheless, the dynamics of the superfluid flow is different. Compared to
TG and ABC cases, in the SRP case the initial field is vortex free and dominated by the
compressible kinetic energy; vortices nucleate progressively and do not display long vortex
lines. For the RVR flow, evolution is opposite to that observed for the SRP case: in
the early stages of the time evolution the incompressible kinetic energy is dominant; the
compressible kinetic energy then starts to increase due to sound emissions through vortex
reconnections. However, like in well-documented TG and ABC cases, a Kolmogorov-like
scaling of the incompressible kinetic energy spectrum is obtained for the new SRP and
RVR cases.

Concerning the analysis of the QT field, we present classical diagnostic tools (inspired
from CT), as the energy decomposition and associated spectra (Nore et al., 1993, 1997a)
and also new ones, as the second-order structure function, not reported in the previously
cited studies. This supplements the statistical description of the superfluid flow. We also
carefully investigate the influence of numerical parameters (as the grid resolution of a
vortex, the maximum resolved wave-number and the computed local Mach number) on
the characteristic of QT. This topic is generally very briefly addressed in physical papers
on GP-QT.

Starting from the observation that in previously published studies of GP-QT, the
focus was mainly given to the physics of turbulence, this paper is also intended to define
in detail numerical benchmarks in the framework of parallel computing. We start by
revisiting classical GP-QT settings (based on TG and ABC flows). New results obtained
with our high-performance/high-accuracy parallel code are compared with available data
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in the literature. We then present the new numerical benchmarks, based on random phase
fields or random vortex rings generation. The new benchmarks offer a new perspective
in comparing the classical CT based approaches to more GP-oriented models. For
all benchmarks, we offer a comprehensive description of the numerical and physical
parameters and give checkpoint values for validating each step of the simulation. This
could be useful to assess new numerical methodologies or tune/validate new modern GP
numerical codes.

The organization of the paper is as follows. Section 2 introduces the GP mean field
equation, its stationary version and the hydrodynamic analogy. Section 3 presents the
mathematical and physical QT model used in the present numerical simulations. The
main characteristics of the quantum flow (healing length, sound velocity) and the notion of
quantized vortex are introduced. The Bogoliubov dispersion relation and the validity of the
model are also discussed. In Section 4 we present the main diagnostic quantities generally
used to analyse a QT flow: spectra of compressible and incompressible kinetic energies,
velocity structure functions and helicity. The numerical methods used to solve the GP
equation and the associated GPS code are described in Section 5. An extended subsection
is devoted to the derivation of dimensionless equations. The particular numerical methods
used in this study to advance the GP wave function in imaginary-time (ARGLE) or
real-time (GP) are also described. Section 6 presents in detail four different approaches
to generate the initial field for the simulation of decaying GP-QT: Taylor-Green (TG),
Arnold-Beltrami-Childress (ABC), smoothed random phase (SRP) and random vortex
rings (RVR). Each method is associated to a benchmark. The results obtained for the
four benchmarks are discussed in Section 7. We present values, spectra and structure
functions of main quantities of interest (energy, helicity, etc.) that could be useful to
benchmark numerical codes simulating QT with the GP model. Finally, the main features
of the benchmarks and their possible extensions are summarized in Section 8. Appendix
A presents strong scalability tests of the computation code used to run a specific case
(the ABC flow) in both MPI and hybrid MPI-OpenMP configurations.

2. The Gross-Pitaevskii model

In the zero-temperature limit, the superfluid system of weakly interacting bosons of
mass m, is described by the Gross-Pitaevskii mean field equation (Pitaevskii and Stringari,
2003):

i~
∂

∂t
ψ(x, t) =

(
− ~2

2m∇
2 + Vtrap(x) + g |ψ(x, t)|2

)
ψ(x, t), (1)

where Vtrap is the external trapping potential and g the non-linear interaction coefficient

g = 4π~2as
m

, (2)

with as the s-wave scattering length for the binary collisions within the system.
The complex wave function ψ is generally represented as (Madelung transform):

ψ =
√
n(x, t) eiθ(x,t), n(x, t) = |ψ(x, t)|2 = ψ(x, t)ψ∗(x, t), (3)

with n the atomic density and θ the phase of the order parameter. We denote by ψ∗ the
complex conjugate of the wave function.

5



The main integral quantities conserved by the GPE (1) are the number of atoms N

N =
∫
|ψ|2 dx =

∫
ndx. (4)

and the energy of the system

E(ψ) =
∫ (

~2

2m |∇ψ|
2 + Vtrap |ψ|2 + 1

2g|ψ|
4
)
dx. (5)

Stationary solutions to the GPE are obtained by considering that the wave function
evolves in time as:

ψ(x, t) = Ψ(x) exp(−iµt/~), (6)
with µ the chemical potential. Note that |ψ| = |Ψ| and the number of atoms in (4) is
conserved by the stationary field. The time-evolution GP equation (1) then reduces to
the stationary (time-independent) GP equation:

− ~2

2m∇
2Ψ + VtrapΨ + g|Ψ|2Ψ = µΨ. (7)

The chemical potential µ is fixed by the normalization condition (4) and expressed from
(6) and (7) as:

µ = 1
N

∫ (
~2

2m |∇Ψ|2 + Vtrap |Ψ|2 + g|Ψ|4
)
dx = 1

N

(
E(Ψ) +

∫ 1
2g|Ψ|

4 dx
)

. (8)

The hydrodynamic analogy of the GPE (1) is obtained by relating the wave function
ψ to a superfluid flow of mass density

ρ(x, t) = mn(x, t) = m |ψ(x, t)|2, (9)
and velocity

v(x, t) = ~
m
∇θ(x, t) = ~

ρ

ψ∗∇ψ − ψ∇ψ∗

2i . (10)

For a flow of non-vanishing density (ρ , 0), we infer from (10) that the superfluid is
irrotational:

∇× v = 0. (11)
The evolution equations for the density ρ and the velocity v can be derived by inserting

the Madelung transform (3) in the GPE (1), separating the imaginary and real parts,
and using definitions (9)-(10):

∂ρ

∂t
+∇ · (ρv) = 0, (12)

∂v
∂t

+ 1
2∇(v2) = − 1

m
∇ (gn+ Vtrap) + ~2

2m2∇
(

1
√
ρ
∇2(√ρ)

)
. (13)

Equation (12) is the continuity equation of the superflow, expressing the conservation
of the number of particles N given by (4). Equation (13) is the momentum equation
and its last term in the right-hand side is the gradient of the so-called quantum pressure.
This term is a direct consequence of the Heisenberg uncertainty principle (Pitaevskii and
Stringari, 2003) and depends on the gradient of density, suggesting that quantum effects
are important in non-uniform gases and, for uniform systems, close to vortex cores. The
system of equations (12)-(13) is equivalent to the original GPE (1).
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3. Mathematical and physical model for quantum turbulence

The mathematical and physical model used in this study is based on the GPE (1) in
which the trapping potential is set to zero (Vtrap = 0). The main consequence of this
assumption is that the momentum equation (13) reduces, after neglecting the quantum
pressure term, to:

∂v
∂t

+ (v · ∇)v = −1
ρ
∇
(
gρ2

2m2

)
. (14)

Equations (12) and (14) are now similar to the Euler equations describing the evolution
of a compressible, barotropic and inviscid classical flow with pressure:

P = gρ2

2m2 . (15)

We thus obtain a GPE-based model that is analogous to that describing a classical flow
of a fluid with zero viscosity. Note that equations (12) and (14) show that the total
momentum of the superfluid,

p =
∫

(ρv) dx = ~
∫
Imag(ψ∗∇ψ) dx, (16)

is conserved. This is not generally the case if Vtrap , 0. To summarize, the three main
integral invariants of the model are: the number of particles N (4), the energy E (5) and
the momentum p (16).

The idea behind the model used in this study is to represent the quantum turbulent
flow as an infinite background uniform flow of constant density to which many vortices
are superimposed in the initial state. The dynamics of this initial state is then followed by
numerically solving the GPE (1). Vortices interact to generate a vortex-tangle turbulent
state that finally reach a statistical convergent state. This approach is similar to that
used in classical fluids to simulate decaying turbulence. Note that, in contrast to CT
Navier-Stokes based models, there is no dissipation in the present zero-temperature GP
model. Phenomenological models for dissipation in superfluids could be added in the
GPE to model thermal excitations (Kobayashi and Tsubota, 2007a).

3.1. Uniform background flow
A second consequence of the assumption Vtrap = 0 is that the stationary GPE (7)

admits an elementary solution Ψ0 representing a flow with constant density ρ = ρ0. From
(7) and (6), we infer that:

µ0 = g|Ψ0|2 = g|ψ0|2 = gn0 = g
ρ0

m
. (17)

The solution Ψ0 could be taken as real and represents a first approximation of a quantum
uniform flow developing in a container of volume V , far from the walls. This flow is
compressible, with pressure given by Eq. (15) and sound velocity c defined as in classical
hydrodynamics:

c =

√
∂P0

∂ρ0
=
√
gρ0

m
=
√
gn0

m
. (18)
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The sound velocity gives a characteristic velocity of the uniform flow. To have a
complete space-time description of the system we need to introduce a characteristic
length scale. The healing length indicates the distance over which density variations take
place in the system. The following expression for the healing length is obtained from
the momentum equation (13) by imposing that the pressure term balances the quantum
pressure term over the healing length:

ξ = ~√
2mgn0

= ~√
2mµ0

= 1√
2

~
mc

. (19)

It follows that the quantum pressure is negligible for distances R� ξ, which is exactly
the domain of validity of the hydrodynamic analogy with the Euler equations.

3.2. Quantized vortices
The definition (10) of the superflow velocity becomes singular along lines with vanishing

density (ρ = 0). The lines along which both real and imaginary part the order parameter
are zero define topological defects, known as quantum vortices. The hydrodynamic
analogy through the Madelung transform becomes singular when vortices are present
in the superflow. A detailed review of mathematical problems related to the Madelung
transform in presence of quantum vortices is offered in Carles et al. (2012). It is important
to recall that vortex solutions are not singular solutions of the GPE (1).

A straight-line vortex in a uniform flow could be represented using cylindrical coordi-
nates (r,ϕ, z) as (Pitaevskii and Stringari, 2003):

Ψv = √n0 f(η) eiκϕ, (20)

where η = r/ξ and κ is necessarily an integer to ensure that the wave function is single
valued. Using (10) we infer that the velocity around the vortex line is tangential and
singular for r = 0:

vv = ~
m

1
r

∂(κϕ)
∂ϕ

eϕ = ~
m

κ

r
eϕ. (21)

The circulation around a regular path C surrounding this vortex line is then:

Γv =
∮
C

vv · dl = (2π)κ ~
m

= κ
h

m
. (22)

This quantification of the vortex line circulation is the outstanding difference between
quantum and classical hydrodynamics. The integer κ is usually referred to as winding
number or charge of the vortex. The asymptotic behaviour of the vortex solution (20)
near the origin (r = 0) is well-known (Neu, 1990):

f(η) ∼ η|κ| +O(η|κ|+2), η → 0, (23)

suggesting that the vortex core, i. e. the region near the vortex line where the density is
varying in a significant way, is of the order of the healing length ξ.

Using (21), the kinetic energy (
∫
ρv2

vdx) of the vortex solution results to be propor-
tional to κ2 (e. g. Barenghi and Parker, 2016). This implies that a multiply quantized
vortex with κ > 1 is energetically unstable and split into κ-singly quantized vortices in
the GP model.
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3.3. Dispersion relation and validity of the model
Since the GPE (1) sustains wave solutions, it is interesting to estimate the response

of the system to small perturbations. The Bogoliubov-de Gennes model is based on the
linearisation of (1) around a stationary solution Ψ0 by assuming a perturbation of small
amplitude of the form:

δψ = a(x)e−iωt + b∗(x)eiω
∗t, (24)

where a, b are complex functions (of small amplitudes) and ω is a complex frequency.
In the case of the uniform flow, Ψ0 = √n0 and perturbations are taken as plane waves
a(x) = ueik·x, b(x) = veik·x, with k the wave number vector. We obtain that the
resulting Bogoliubov-de Gennes system admits non-trivial solution if

(~ω)2 =
(

~2

2mk2
)2

+ (gn0)~
2

m
k2. (25)

Using (18) to express the sound velocity and (19) for the healing length, the Bogoliubov
dispersion relation (25) becomes:

ω = ck

√
1 + ξ2k2

2 . (26)

This dispersion relation is linear for (kξ � 1) and the excitations in this regime are
called phonons (sound waves). Going back to the momentum equation (13), we can
easily see that in the phonons regime, the quantum pressure is negligible in front of
the hydrodynamic pressure. Consequently, the validity of the hydrodynamic analogy
is limited to the phonons excitations, a regime where the quantum pressure could be
neglected. In helium II, due to strong interactions between particles, the dispersion
relation has a different shape, with a linear regime followed by a quadratic regime with a
maxon (local maximum) and a roton (local minimum) (Barenghi and Parker, 2016). The
excitations in the quadratic region near the minimum of the dispersion curve are called
rotons. Consequently, using the GPE allows us to capture only the phonons regime of
excitations in a quantum flow.

A second drawback of the GP model in describing superfluid helium turbulence comes
from compressibility effects. An important feature in the hydrodynamic description of
superfluid helium is that the fluid is almost incompressible in both its normal (viscous)
and superfluid components. On the other hand, the hydrodynamic description (12)-(14)
of the GPE shows the compressibility of the GP fluid. We expect, however, that the
GP model applied for low Mach number flows (i. e. the mean superfluid velocity is
much smaller than the sound velocity) provides a good qualitative representation of the
superfluid helium flow and, in particular, of vortex interactions. From a physical point of
view, both drawbacks (dispersion relation and compressibility) of the GPE model can be
alleviated by adding non-local or higher-order non-linear terms. This idea was suggested
by Berloff et al. (2014) who added to the GPE a non-local potential and non-linear terms
up to order 7 (instead of 3 for the standard GPE) to modify the equation of continuity
and model more realistic dispersion curves.
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4. Description of the quantum turbulent flow

4.1. Energy decomposition
The energy is the first integral quantity that will be used to characterize the QT flow

field. The accuracy of numerical simulations in conserving this quantity is an important
checkpoint to validate the numerical scheme and the grid resolution. As in CT, energy
spectra will be used to identify different (Kolmogorov) regimes/ranges in the structure of
the turbulent field. Starting from the observation that the QT field can be viewed as a
background uniform flow to which a large number of quantum vortices are superimposed,
the total energy of the system in QT studies (e. g. Nore et al., 1997a,b) is generally
computed using the form:

ET (ψ) =
∫ (

~2

2m |∇ψ|
2 + 1

2g
(
|ψ|2 − |Ψ0|2

)2
)
dx, (27)

where |Ψ0|2 = n0 is the atomic density of the uniform flow. This expression is strictly
equivalent to the form (5) of the energy because of the conservation of the number of
atoms (4). The corresponding GP equation, equivalent to (1) is then:

i~
∂

∂t
ψ(x, t) =

(
− ~2

2m∇
2 + g

(
|ψ(x, t)|2 − |Ψ0|2

))
ψ(x, t), (28)

Using the hydrodynamic analogy presented in §2, the total energy (27) can be also
presented as:

ET (ρ, v) =
∫ (1

2ρv
2 + ~2

2m2 |∇
√
ρ|2 + 1

2m2 g (ρ− ρ0)2
)
dx. (29)

The three terms in (29) correspond to (Nore et al., 1997a,b):
– the kinetic energy

Ekin =
∫ |√ρv|2

2 dx, (30)

– the so-called quantum energy (expressed using (19))

Eq =
∫

~2

2m2 |∇
√
ρ|2 dx =

∫
c2ξ2|∇√ρ|2 dx. (31)

– and the internal energy (expressed using (18)):

Eint =
∫ 1

2m2 g (ρ− ρ0)2
dx =

∫
c2(ρ− ρ0)2

2ρ0
dx. (32)

The kinetic energy Ekin can be further decomposed (Nore et al., 1997a,b) as the sum of a
compressible part Ec

kin and an incompressible part Ei
kin:

Ec
kin =

∫ |(√ρv)c|2

2 dx, Ei
kin =

∫ |(√ρv)i|2

2 dx, (33)

owing to the Helmholtz decomposition:

(√ρv) = (√ρv)c + (√ρv)i, with ∇× (√ρv)c = 0, and ∇ · (√ρv)i = 0. (34)
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4.2. Spectra and structure functions
Spectra of the different components of the energy and structure functions of velocity

will be used to analyse the QT field, as in CT. The energy spectra are computed using the
following expressions resulting after applying Parseval’s theorem for the Fourier transform:

Eikin(k) = 1
2(2π)3

∫
|k|=k

|Fk(√ρv)i|2 dΩk,

Eckin(k) = 1
2(2π)3

∫
|k|=k

|Fk(√ρv)c|2 dΩk,

Eint(k) = c2

2ρ0(2π)3

∫
|k|=k

|Fk(ρ− ρ0)|2 dΩk,

Eq(k) = c2ξ2

(2π)3

∫
|k|=k

|Fk(∇√ρ)|2 dΩk,

(35)

where Fk is the Fourier transform

Fk(f(x)) =
∫
f(x)e−ik·x dx, F−1

x (g(k)) = 1
(2π)3

∫
g(k)eik·x dk, (36)

and Ωk is the solid angle in the spectral space.
The structure function for the velocity following the x-direction (with unitary vector

ex) is defined as:
Sp//(r) =

∫
((v(x + rex)− v(x)) · ex)p dx, (37)

where p is the order of the structure function and r the length scale. Similar expressions
are used for the structure functions following the y and z directions. Assuming a
homogeneous and isotropic distribution of the QT velocity field statistics, averaging over
different directions should give the same results. As a verification, for p = 2 and large
length scale r, the structure function could be reasonably approximated by:

lim
r→∞

S2
//(r) ' 2

∫
|v(x) · ex|2 dx = 2

∫
v2
x dx. (38)

4.3. Helicity
The helicity is another important integral quantity characterizing the QT flow field.

The definition of helicity in a classical flow is:

H =
∫

v · ω dx, (39)

where ω = ∇ × v is the vorticity. In a quantum fluid, the vorticity concentrates in
vortex cores as Dirac delta functions. Therefore, only quantized vortices bring a non-zero
contribution to the helicity.

We use in this paper the method suggested by Clark di Leoni et al. (2016) to compute
the helicity. Because the superfluid velocity v diverges at the vortex cores as shown in Eq.
(21), the direct calculation of the helicity looks ill-defined. However, only the superfluid
velocity perpendicular to the quantized vortex has a singularity, while the component
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parallel to the quantized vortex remains regular. Using this observation, a regularized
velocity is defined as:

vreg = v‖w/
√
wjwj , (40)

where
w = ~

im
∇ψ∗ ×∇ψ, (41)

and
v‖ = ~wi [(∂i∂jψ)∂jψ∗ − (∂i∂jψ∗)∂jψ]

2im√wkwk(∂lψ)(∂lψ∗)
. (42)

The resultant regularized helicity

Hreg =
∫

vreg · ω dx, (43)

proved useful and efficient in computing the helicity of quantum flows with hundreds of
thousands of knots (Clark di Leoni et al., 2016).

5. Numerical method and computational code

Numerical simulations were performed using the parallel code called GPS (Gross-
Pitaevskii Simulator) (Parnaudeau et al., 2015). The code is based on a Fourier-spectral
space discretization and recent up-to-date numerical methods: a semi-implicit backward-
Euler scheme with Krylov preconditioning for the stationary GP equation (Antoine and
Duboscq, 2014) and various schemes (Strang splitting, relaxation, Crank-Nicolson) for
the real-time GP equation (Antoine et al., 2013). GPS is written in Fortran 90 and
uses a two-level communication scheme based on MPI across nodes and OpenMP within
nodes. Only one external library, FFTW (Frigo and Johnson, 2005), is required for
the computation. Initially designed to simulate BEC configurations (with or without
rotation), the GPS code was adapted in this study for the simulation of QT flows. We
present in this section the main features of the numerical system: the particular scaling
used to obtain the GP dimensionless equations, and the particular numerical methods
used to prepare the initial state and then to advance in real-time the GP wave function.

5.1. Scaling and dimensionless equations
For the numerical resolution of the GP equation (1), it is convenient to use a di-

mensionless form obtained after scaling all physical quantities with the characteristic
scales of the QT field introduced in §4. We start by considering general reference scales
(Lref , vref) for length and velocity, respectively. A natural scale for the wave function ψ is
ψref = √n0. With the scaling:

x̃ = x
Lref

, t̃ = vref

Lref
t, ψ̃ = ψ

√
n0

, (44)

the dimensionless GP equation (28) (with Vtrap = 0) becomes:

i
∂

∂t̃
ψ̃(x, t) =

(
−α∇̃2 + β

(
|ψ̃(x̃, t)|2 − 1

))
ψ̃(x, t), (45)
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with non-dimensional coefficients:

α = ~
2m

1
Lrefvref

=
√

2ξc
2

1
Lrefvref

= 1√
2

(
ξ

Lref

)(
c

vref

)
, (46)

β = gn0

~
Lref

vref
= mc2

~
Lref

vref
= c2
√

2ξc
Lref

vref
= 1√

2

(
Lref

ξ

)(
c

vref

)
. (47)

From (46)-(47) we infer that non-dimensional coefficients α and β are related to physically
relevant scales through:

ξ̃ = ξ

Lref
=
√
α

β
, c̃ = c

vref
=
√

2αβ = 1
Mref

, (48)

where (ξ/Lref) represents the non-dimensional healing length and (c/vref) the non-
dimensional sound velocity. Mref is the reference Mach number, defined as the ratio
between the reference velocity and the sound velocity.

The last important parameters to define when working with non-dimensional equations
are the size of the computational box and the grid resolution. If the physical GP equation
(1) is defined in a cubic computational domain of physical size L, the non-dimensional
size L of the computational box used to discretize the non-dimensional equation (45) is
then:

L = L

Lref
=
(
L

ξ

)(
ξ

Lref

)
=
(
L

ξ

) √
α

β
. (49)

We recall that ξ is a good approximation of the radius of a quantum vortex (see §3.2). It
follows that the ratio (L/ξ) in (49) is physically important since it indicates how many
vortices the computational domain can accommodate in one direction:

N1d
v = L

2ξ = L2

√
β

α
. (50)

Thus, increasing the value of L (for fixed α and β) will result in a higher number of
vortices present in the computational box.

When defining the grid resolution, it is important to control the number of grid points
inside the vortex core. If the numerical simulation uses Nx grid points in each direction, the
physical grid spacing is δx = L/Nx, or in non-dimensional units δx̃ = (δx/Lref) = L/Nx.
It is important to quantify the grid spacing with respect to the healing length by defining:

χ = δx

ξ
=
(
L
Nx

)(
Lref

ξ

)
=
(
L
Nx

) √
β

α
. (51)

The parameter χ defined in (51) is also important when analysing the dispersion relation
(26) presented in §3.3 to assess on the validity of the GP model. Indeed, the maximum
wave-number represented on a grid of size δx is kmax = (2π)/(2δx) and, consequently,
the non-dimensional quantity (kmaxξ) is expressed as:

kmaxξ = π
ξ

δx
= π

χ
. (52)
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The numerical resolution will be then fixed in order to keep (kmaxξ) ≈ 1, ensuring that
the simulation captures the regime of phonons excitations.

We use in this paper the strategy suggested in Nore et al. (1997a,b) to fix the values
of parameters defining a QT simulation. The size of the non-dimensional computational
box is first set to L = 2π, which is convenient for spectral methods. Moreover, instead
of setting independently the constants α and β, only the value of the reference Mach
number Mref is fixed to a relatively low value. This is equivalent to impose the value of
the product αβ. From previous relations we infer that:

L = 2π, αβ = 1
2M2

ref
=⇒



ξ

Lref
=
√

2αMref ,
vref = Mrefc,
L

ξ
= 2π√

2αMref
,

kmaxξ =
(
Nx
2

) √
2αMref .

(53)

We note from (53) that the parameter α can be used to control the non-dimensional size
of the vortex, while the grid resolution Nx can be set to control the parameter (kmaxξ).
We generally set for QT simulations Mref = 0.5, equivalent to αβ = 2.

Particular care has to be devoted when computing non-dimensional values of different
quantities appearing in integral invariants or in the hydrodynamic analogy. If the non-
dimensional wave function is computed from (45) as ψ̃(x̃, t̃) = |ψ̃| exp(iθ(x̃, t̃)), the scaled
number of atoms results from (4) as:

Ñ = N

N0
= 1
L3

∫
D
|ψ̃|2dx̃, (54)

where D is the non-dimensional computation domain. The scaled total energy (per volume
unit) results from (27):

Ẽ(ψ̃) = ET (ψ)
Eref

= 2α
L3

∫
D

(
α|∇̃ψ̃|2 + β

2
(
|ψ̃|2 − 1

)2
)
dx̃, (55)

with energy units Eref = ρ0v
2
refL

3 = ~2n0LL2/(4mα2).
From the hydrodynamic analogy developed in §2, taking as reference the density of

the background uniform flow, i. e. ρref = ρ0 = mn0, results in:

ρ̃ = ρ

ρref
= mn0|ψ̃|2

ρref
= |ψ̃|2. (56)

The momentum is derived from (10) and thus computed in the non-dimensional code as:

ρ̃ṽ(x̃, t̃) = 2αψ̃
∗∇̃ψ̃ − ψ̃∇̃ψ̃∗

2i = (2α) Imag(ψ̃∗∇̃ψ̃). (57)

The non-dimensional superflow velocity also results from (10):

ṽ(x̃, t̃) = v(x, t)
vref

= ~
mvrefLref

∇̃θ(x̃, t̃) = 2α ∇̃θ(x̃, t̃), (58)
14



and the non-dimensional circulation of a vortex of winding number (κ = 1) from (22):

Γ̃ = Γv
vrefLref

= 2π ~
mvrefLref

= 4πα. (59)

Finally, the hydrodynamic expression (29) of the total energy becomes

Ẽ(ψ̃) = ET (ψ)
Eref

= 1
L3

∫
D

(
1
2 ρ̃ṽ

2 + (2α2)|∇(
√
ρ̃)|2 + (αβ) (ρ̃− 1)2

)
dx̃, (60)

with the same reference energy as in (55) Eref = ρ0v
2
refL

3. In (60) the first term represents
the kinetic energy Ẽkin(ψ̃), the second the quantum energy Ẽq(ψ̃) and the third the
interaction energy Ẽint(ψ̃). Note that 2α2 = ξ̃2c̃2 and αβ = 1/(2M2

ref).
To simplify the presentation, we drop in the following the tilde notation. All the

developments and results in the remaining of the paper concern non-dimensional quantities.

5.2. Numerical method to compute stationary solutions
To find stationary solutions to (45), a very popular numerical method is the normalized

gradient flow (Bao and Du, 2004). The wave function is propagated (in imaginary time)
following the gradient flow corresponding to the minimization of the energy (55), until a
local or global minimum of the energy is reached, corresponding to metastable or ground
states, respectively. In the original method, the solution is subsequently normalized to
satisfy the constraint of the conservation of the number of atoms (equivalent to imposing
the L2-norm of the solution). In our case, we want to find a stationary state that mimics
a classical flow with prescribed velocity vext. Assuming that ∇ · vext = 0, after applying
a local Galilean transformation, the non-dimensional energy of the driven field becomes
(see Nore et al., 1997a, for details):

Ev = 2α
L3

∫
D

(
α
∣∣∣∇ψ − ivext

2α ψ
∣∣∣2 + β

2 (|ψ|2 − 1)2
)
dx, (61)

or, using the hydrodynamic analogy:

Ev(ψ) = 1
L3

∫
D

(
1
2ρ |v− vext|2 + (2α2) |∇(√ρ)|2 + (αβ) (ρ− 1)2

)
dx. (62)

In this setting, we are searching an unconstrained minimizer of Ev. Owing to the previous
decomposition, there is a competition between the background uniform distribution
|ψ|2 = 1 and a phase accommodating to vext. Numerically, we solve the gradient descent
equation (or Advective Real Ginzburg-Landau Equation, ARGLE):

∂

∂τ
φ(x, t) =

(
α∇2 − ivext · ∇ −

|vext|2

4α + β − β|φ(x, t)|2
)
φ(x, t), x ∈ D, (63)

with initial condition φ(x, 0+) = φ0(x). Note that τ is here a pseudo-time used to
propagate the solution until a stationary state is reached. Hence, this method belongs
to the class of so-called imaginary time propagation methods. We use a semi-implicit
Backward Euler scheme to advance the solution in the pseudo-time interval (τn, τn+1):

φ̃n+1(x)− φn(x)
δτ

= α

2∇
2φ̃n+1 +

(
α

2∇
2 − ivext · ∇ −

|vext|2

4α + β − β|φn(x)|2
)
φ̃n(x).

(64)
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where δτ := τn+1 − τn. The resulting system is solved with spectral accuracy using
FFTs. The Backward Euler scheme was proved to be very effective is solving stationary
GP equations with spectral discretization (the terms in Eq. (64) are easily computed
with FFTs). The details of the spectral implementation and some proofs for the energy
diminishing properties of the scheme are provided in (Bao and Du, 2004).

The ARGLE procedure stops either after a pre-definite number of pseudo-time steps
or when the convergence criterion is reached:

||φn+1 − φn||∞
δτ

≤ ε, (65)

where ε is a user defined parameter. If this criterion is not satisfied at the end of the
computation, it is still possible to check the energy convergence condition:

|Ev(φn+1)− Ev(φn)|
δτEv(φn) ≤ ε, (66)

which is generally less constraining than (65). Note that, even when the convergence
is achieved, we can only guarantee that the Backward Euler method provides a local
minimum of Ev.

5.3. Numerical method for the time evolution
The simulation of QT consists of solving the GP equation (45) using a pseudo-spectral

scheme in space and a second order splitting for the time discretization (ADI, Alternating
Direction Implicit or Strang splitting). Let us rewrite (45) as:

∂

∂t
ψ = iα∆ψ − iβ|ψ|2ψ

= Lxψ + Lyψ + Lzψ +N(ψ), (67)

with the following definitions:

Lxψ = iα∂2
xxψ, Lyψ = iα∂2

yyψ,
Lzψ = iα∂2

zzψ, N(ψ) = −iβ|ψ|2ψ. (68)

If H denotes one of the previous operators (Lx, Ly, Lz or N), and φ is a given field, we
denote by S(s,H)φ := ψ(s) the solution at time t = s of the following Cauchy problem:

∂

∂t
ψ = H(ψ),

ψ(t = 0) = φ.
(69)

Then the second order Strang splitting scheme is:

ψn+1 = S

(
δt

2 ,Lx
)
S

(
δt

2 ,Ly
)
S

(
δt

2 ,Lz
)
S(δt,N)S

(
δt

2 ,Lz
)
S

(
δt

2 ,Ly
)
S

(
δt

2 ,Lx
)
ψn.

(70)
This scheme is indeed second order accurate, provided that we solve the partial problems
exactly, i. e. each term S(s,H) is computed exactly. This is achieved using the spectral
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representation. For j ∈ {x, y, z}, using Fj the Fourier transform in the j direction, we
obtain

S (s,Lj)φ = F−1
j

(
e−iαk

2
jsFjφ

)
. (71)

For the non linear operator S(δt,N), we notice that, if ψN is such that ∂tψ
N =

−iβ|ψN |2ψN , then ∂(|ψN |2)/∂t = 0. Consequently, this step can be solved analyti-
cally and:

S (s,N)φ = e−iβ|φ|
2sφ. (72)

In conclusion, using the spectral discretization we obtain a second order accurate scheme
for the time integration.

6. Initial data preparation and benchmarks

As in numerical studies of classical turbulence, the preparation of the initial state
is crucial in investigating statistical properties of QT. We describe in this section four
different approaches to generate the initial field for the simulation of decaying GP-QT.
Each method is associated to a benchmark for the GP-QT simulation. The first two
methods are classical (Nore et al., 1997a,b) and inspired from CT. They start from defining
a velocity field containing vortices. The Taylor-Green or the Arnold-Beltrami-Childress
(ABC) model flows are used for this step. A wave function field is then constructed such
that its nodal lines correspond to vortex lines of the velocity field. This initial wave
function is then used in the ARGLE procedure described in §5.2 to generate an initial
field for the real-time GP simulations. The role of the ARGLE step is to reduce the
acoustic emission of the initial field. The last two methods are new and based on the
direct manipulation of the wave function. We prescribe either a random phase field or we
manufacture an initial field containing many quantum vortex rings. The four methods
are described in detail below.

6.1. Taylor-Green (TG) flow
The velocity vTG of the Taylor-Green (TG) three-dimensional vortex flow is defined

as:

vTG,x(x, y, z) = sin(x) cos(y) cos(z),
vTG,y(x, y, z) = − cos(x) sin(y) cos(z),
vTG,z(x, y, z) = 0.

(73)

To create a wave function field ψTG with zeros along vortex lines of vTG, we make use of
the Clebsch representation of the velocity field (Nore et al., 1997a,b):

∇× vTG = ∇λ×∇µ, (74)

with Clebsch potentials

λ(x, y, z) = cos(x)
√

2 | cos(z)|,
µ(x, y, z) = cos(y)

√
2 | cos(z)| sgn(cos(z)),

(75)
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where sgn is the sign function. Note that a zero in the (λ,µ) plane corresponds to a
vortex line of vTG (see Nore et al. (1997a,b) for details).

In practice, we start by defining in the (λ,µ) plane a complex field ψe with a simple
zero at the origin:

ψe(λ,µ) = (λ+ iµ) tanh(
√
λ2 + µ2/

√
2ξ)√

λ2 + µ2
. (76)

When replacing (75) into (76), a three-dimensional complex field is obtained, with one
nodal line. We can further define on [0,π]3:

ψ4(x, y, z) = ψ4(λ(x, y, z),µ(x, y, z)) = ψe(λ−
1√
2

,µ)ψe(λ,µ− 1√
2

)

× ψe(λ+ 1√
2

,µ)ψe(λ,µ+ 1√
2

),
(77)

which now contains four nodal lines (see Fig. 1 a, left). When ψe is extended by mirror
reflection to the entire domain [0, 2π]3, the obtained wave function field contains closed
rings inside the domain (see Fig. 1 a, right).

The last manipulation of the wave function is intended to match the circulation
of the velocity field vTG. From (74) and (75) we compute the circulation on the face
z = 0, (x, y) ∈ [0,π]× [0,π] using the Stokes’ theorem:

Γz=0 =
∫ π

0

∫ π

0
(∇× vTG) · ezdx dy =

∫ π

0

∫ π

0
2 sin(x) sin(y)dx dy = 8. (78)

Defining the ratio of the total circulation to the circulation (59) of a single vortex as
γd = Γ/Γv = 2/(πα), the wave-function field matching the circulation of the TG velocity
field is (Nore et al., 1997a) is

ψARGLE(x, y, z) = ψ4(λ(x, y, z),µ(x, y, z))[γd/4], (79)

where [.] denotes the integer part. In this setting, each vortex line corresponds to a
multiple zero line (see Fig. 1 a). The next step in the preparation of the initial field is to
use the ARGLE imaginary time procedure (63) with vext = vTG and initial condition
φ(t = 0+) = ψARGLE. During the ARGLE dynamics the multiple zero lines in ψARGLE
will spontaneously split into [γd/4] = [1/(2πα)] single zero lines (see Fig. 1 b). The
system will finally converge to initial conditions for the GPE, compatible with the TG
flow, and with minimal sound emission. We denote the resulting converged state as φTG
(see Fig. 1 c).
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a)

b)

c)

Figure 1: Illustration of the initial field preparation using the Taylor-Green vortex flow. Imaginary time
evolution of quantized vortices (iso-surfaces of low φTG) during the ARGLE calculation. Case Nx = 128
with [γd/4] = 3 (see Table 2). Two different views, on the subdomain [0,π]3 (left) and the entire domain
[0, 2π]3 (right), illustrating the symmetry of the flow. Panels from top to bottom: (a) τ = 0, the initial
condition φ(t = 0+) = ψARGLE, Eq. (79) with multiply quantized (thick) vortices, (b) τ = 1 when each
initial vortex line splits in 3 singly quantized vortices and (c) τ = 60 for the final converged ARGLE field,
with closed loops inside the domain.
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6.2. Arnold-Beltrami-Childress (ABC) flow
The TG vortex flow (73) has zero helicity. To obtain a a helical flow at large scales,

we use the method suggested by Clark di Leoni et al. (2017) in their study of helical
quantum turbulence at zero temperature. The external velocity field is defined as the
superposition of two Arnold-Beltrami-Childress (ABC) flows:

vABC = v(1)
ABC + v(2)

ABC, (80)
with

v
(k)
ABC,x(x, y, z) = B cos(ky) + C sin(kz),

v
(k)
ABC,y(x, y, z) = C cos(kz) +A sin(kx),

v
(k)
ABC,z(x, y, z) = A cos(kx) +B sin(ky).

(81)

Unless stated otherwise, we use (A,B,C) = (0.9, 1, 1.1)/
√

3. As for the Taylor-Green
flow, we use the ARGLE procedure (63) with vext = vABC and initial condition:

φ(t = 0+) = ψ
(1)
ABC × ψ

(2)
ABC. (82)

The wave functions ψABC are defined as:

ψ
(k)
ABC = ψx,y,z

A,k × ψ
y,z,x
B,k × ψ

z,x,y
C,k , ψx,y,z

A,k = exp
(
i

[
A sin(kx)

2α

]
y + i

[
A cos(kx)

2α

]
z

)
,

(83)
where [a] stands for the nearest integer to a. The ARGLE procedure has the role to
minimize the amount of energy of acoustic modes in the initial condition. Details of the
quantum ABC flow are discussed by Clark di Leoni et al. (2016, 2017). We denote the
resulting converged state as φABC.

6.3. Smoothed random phase (SRP) initial wave function field
Previous initial fields for the simulation of the QT were built based on the analogy

with classical flows (TG and ABC) with vortices. We present in this section the first
method to set an initial field by direct manipulation of the wave function. A smoothed
random phase (SRP) is assigned to the initial wave function ψSRP . Initially, there are
no vortices present in the field. Vortices nucleate during the time evolution and their
interaction generate a QT field. In practice, to obtain the nucleation of enough vortices
for QT, we initialize the field as follows:

ψSRP = eiθ(x), (84)
where θ is a smooth random periodic function in the computational box. To create
this initial phase, we first generate the random phase θi,j,k ∈ [−K,K] at N3

r points
xi,j,k = Ns × (i, j, k) where Ns = N/Nr and i, j, k ∈ {0, 1, 2, · · · ,Nr − 1}. Then, θ is
obtained by cubic spline interpolation (with periodicity) using the points (xi,j,k, θi,j,k).
The one-dimensional cubic (and uniform) spline interpolation is expressed as:

θNsir+is,Nsjr,Nskr
= AisθNsir,Nsjr,Nskr

+BisθNs(ir+1),Nsjr,Nskr

+ Cisθ
′′
Nsir,Nsjr,Nskr

+Disθ
′′
Ns(ir+1),Nsjr,Nskr

,

Ais = Ns − is
Ns

, Bis = is
Ns

, Cis =
(A3

is
−Ais)N2

s

6 , Dis =
(B3

is
−Bis)N2

s

6 ,
(85)
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for ir, jr, kr ∈ {0, 1, · · · ,Nr − 1} and is ∈ {1, 2, · · · ,Ns − 1}. The second derivative θ′′ is
obtained by solving the following linear system with tridiagonal matrix:

N2
s (θ′′Nsir−1,Nsjr,Nskr

+ 4θ′′Nsir,Nsjr,Nskr
+ θ′′Nsir+1,Nsjr,Nskr

)
= 6 (θNsir−1,Nsjr,Nskr

− 2θNsir,Nsjr,Nskr
+ θNsir+1,Nsjr,Nskr

) .
(86)

After the interpolation along the i-direction, we compute the spline interpolation along
the j-direction

θi,Nsjr+js,Nskr
= Ajs

θi,Nsjr,Nskr
+Bjs

θi,Ns(jr+1),Nskr

+ Cjs
θ′′i,Nsjr,Nskr

+Djs
θ′′i,Ns(jr+1),Nskr

, (87)

for i ∈ {0, 1, · · · ,N − 1}, jr, kr ∈ {0, 1, · · · ,Nr − 1}, and js ∈ {1, 2, · · · ,Ns − 1}, and,
finally, that along the k-direction

θi,j,Nskr+ks
= Aks

θi,j,Nskr
+Bks

θi,j,Ns(kr+1) + Cks
θ′′i,j,Nskr

+Dks
θ′′i,j,Ns(kr+1), (88)

for i, j ∈ {0, 1, · · · ,N − 1}, kr ∈ {0, 1, · · · ,Nr − 1}, and ks ∈ {1, 2, · · · ,Ns − 1}.
With this method, the characteristic variation of the phase θ is KNr/π. The charac-

teristic velocity results from (58): v = 2α(KNr/π). The Mach number of the system is
computed using (48) as M = v/c =

√
2αKNr/π

√
β.

We denote the resulting converged state as ψSRP. An example of the resulting flow is
shown in Fig. 2.

−K

K

K

−K

Figure 2: Illustration of the initial field preparation using the SRP (smoothed random phase) method.
Spline interpolation in one dimension using random values for the phase (left) and density contours
(right) of the final 3D wave function ψSRP.
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6.4. Random vortex rings (RVR) initial wave function field
The main idea for this last initial condition is to prepare an initial state containing

enough vortices to lead to QT. We derive in the following a method to fill the computational
bow with vortex rings. The challenge is to obtain a physically acceptable ansatz. We
start from the single vortex ring solution to the GP equation (Pitaevskii and Stringari,
2003). A vortex ring of radius R and constant translational speed can be approximated
as:

ψVR(x, y, z,R) = f
(√

(r −R)2 + z̃2
)
e±i tan−1( z̃

r−R ), (89)

f(r) =

√
a1(r/ξ)2 + a2(r/ξ)4

1 + b1(r/ξ)2 + a2(r/ξ)4 , (90)

a1 = 73 + 3
√

201
352 , a2 = 6 +

√
201

528 , b1 = 21 +
√

201
96 , (91)

x̃ = x− π, (92)
r =

√
x̃2 + ỹ2, (93)

ξ =
√
α/β (94)

where f(r) is the solution to the GP equation (45) written in cylindrical coordinates for
ψ = f(r)eiκ tan−1(y/x) with κ = 1:

− α

r

d

dr

(
r
df

dr

)
+ ακ2f

r2 + β(f2 − 1)f = 0. (95)

The form in (90) is obtained as the Padé approximation of this solution. Coefficients a1,
a2, and b1 in (91) are fixed by satisfying (95) to the order of (r/ξ)3 for both r/ξ � 1 and
r/ξ � 1. This expression stands for a vortex ring centered in the origin. Note that this
definition is consistent with a vortex core size of the order of ξ.

The vortex ring ansatz ψR has the finite net momentum ρv. To eliminate this
momentum, we add an opposite-symmetrical ring by setting the wave function for a
vortex-ring pair (VRP) as:

ψVRP(x, y, z,R, d) = ψVR(x, y, z − d/2,R)ψ∗VR(x, y, z + d/2,R), (96)

where d is the inter-vortex distance. Because the ansatz ψVRP for a vortex-ring pair does
not satisfy the periodic boundary condition, we rewrite it as

ψVRP(x, y, z,R, d)→ ψVRP(x, y, z,R, d)
× ψ∗VRP(2L − x, y, z,R, d)ψ∗VRP(−x, y, z,R, d)
× ψ∗VRP(x, 2L − y, z,R, d)ψ∗VRP(x,−y, z,R, d)
× ψ∗VRP(x, y, 2L − z,R, d)ψ∗VRP(x, y,−z,R, d).

(97)

The last step to prepare the initial state ψRVR (random vortex rings) is obtained
by randomly putting vortex-ring pairs in the domain. First, we randomly translate the
ansatz ψVRP (97) as

ψRVR(x, y, z,R, d) ≡ F−1
x
(
eik·XFk(ψVRP(x, y, z,R, d))

)
, (98)

22



where X = (X,Y ,Z) ∈ [0, 2π]3 are uniform random numbers. After that, we randomly
rotate the ansatz by:

ψRVR(x, y, z,R, d)→



ψRVR(x, y, z,R, d)
ψRVR(x, z, y,R, d)
ψRVR(y,x, z,R, d)
ψRVR(y, z,x,R, d)
ψRVR(z,x, y,R, d)
ψRVR(z, y,x,R, d)


. (99)

Finally, the initial state ψRPR is obtained by preparing NV different ansatze ψRVR and
multiplying them. Changing the radius of the ring R, the inter-vortex distance d or the
number of vortex rings pairs NV will impact the behaviour of QT. An example of the
resulting flow is shown in Fig. 3.

Figure 3: Illustration of the initial field preparation using random vortex ring pairs. Vortex lines
(iso-surfaces of low ρ) for the wave function ψRVR (Eq. 99) with, from left to right, NV =1, 20 and 50
vortex ring pairs.

7. Numerical results

We describe in this section quantum turbulence flows simulated using the four ini-
tial conditions described in the previous section: Taylor-Green (TG), Arnold-Beltrami-
Childress (ABC), smoothed random phase (SRP) and random vortex rings (RVR). We
present values, spectra and structure functions of main quantities of interest (energy,
helicity, etc.) that could be useful to benchmark numerical codes simulating QT.

The main physical and numerical parameters of the runs were fixed following the
scaling analysis provided in §5.1 and are summarized in Table 1. Runs are identified
using the abbreviation of the initial condition, followed by the identifier of the space
resolution, e. g. TG a is the run using the Taylor-Green initial condition and a 1283 grid.
Resolutions up to 10243 grid points (runs ” d”) were considered for some cases. For all
simulations, the grid is equidistant in each space direction, covering a domain of the same
size [0,L]3, with L = 2π. We recall that a Fourier spectral spatial discretization with
periodic boundary conditions is used in the GP solvers.

Using the contribution by Nore et al. (1997a) as guideline, the reference Mach num-
ber was fixed to Mref = 0.5, equivalent to a non-dimensional speed of sound c = 2.
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Run L Nx Mref c α β kmaxξ δx/ξ ξ N1d
v

a 2π 128 0.5 2.0 0.05000 40 2.26 1.388 0.035355 88
b 2π 256 0.5 2.0 0.02500 80 2.26 1.388 0.017678 177
c 2π 512 0.5 2.0 0.01250 160 2.26 1.388 0.008839 355
d 2π 1024 0.5 2.0 0.00625 320 2.26 1.388 0.004419 710

Table 1: Numerical and physical parameters used in the QT simulations.

Consequently, αβ = 2 for all cases. Following (53), when increasing the grid resolution
Nx by a factor of 2, the value of the parameter α is diminished by the same factor in
order to keep constant the value of kmaxξ = 8

√
2/5 = 2.26. There are two main conse-

quences of this setting: the non-dimensional value of the healing length ξ =
√

2αMref
diminishes when Nx is increased, while the grid resolution of a vortex is kept constant
δx/ξ = π/(kmaxξ) = 1.388. We check for the TG case that this grid resolution is enough
to accurately resolve vortices in our QT simulations. Since the size L of the computational
box is kept constant, the higher the grid resolution Nx, the larger is the number of vortices
present in the domain (see values of N1d

v in Table 1).

7.1. Benchmark #1: Taylor-Green quantum turbulence (TG-QT)
The Taylor-Green initial field was prepared as described in §6.1. We display in Table

2 the values of the time step δt used in the GP solver (see §5.3) and the final time Tf
of each simulation. The parameters of the corresponding imaginary-time (IT) run cases
preparing the initial condition using the ARGLE solver are also presented, with δτ and
τf the imaginary-time step and final value at convergence, respectively, and [γd/4] the
winding number of initial TG vortices seed at τ = 0 (see Eq. (79) and Figure 1).

Run Nx δt Tf

TG a 128 1.250e-3 12
TG b 256 6.250e-4 12
TG c 512 3.125e-4 12
TG d 1024 3.125e-4 10

Run Nx [γd/4] δτ τf

TG aIT 128 3 1.2500e-2 60
TG bIT 256 6 6.2500e-3 60
TG cIT 512 12 3.1250e-3 60
TG dIT 1024 25 1.5625e-3 60

Table 2: Runs for the TG-QT case. Parameters used in the GP solver (cases TG a to TG d) and
the imaginary-time (IT) ARGLE solver (cases TG aIT to TG dIT). For each space resolution Nx, the
corresponding physical and numerical parameters are displayed in Table 1.

7.1.1. Results for the imaginary time (ARGLE) procedure
In defining this benchmark, it is important to describe in detail the initial field

obtained after the imaginary time (ARGLE) procedure. We recall that this procedure
starts from the ansatz ψARGLE (79) containing multiple zero TG vortices that split
into [γd/4] = [1/(2πα)] singly quantized vortices during the imaginary time propagation
(see Fig. 1 illustrating the case TG aIT). Note from Table 2 that when increasing
the grid resolution Nx, the ansatz TG vortices split in a larger number of individual
quantized vortices (up to 25 for Nx = 1024). This is illustrated in Fig. 4 showing vortex
configurations obtained at the end of the ARGLE procedure for runs TG aIT, TG bIT
and TG cIT.
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Figure 4: TG-QT. Initial condition computed with the imaginary-time ARGLE solver. Vortex lines
(iso-surfaces of low ρ) of the converged wave function φTG at final imaginary-time τf . From left to right:
grid resolutions Nx = 128, 256, 512 (corresponding to runs TG aIT, TG bIT and TG cIT in Table 2).

To validate the ARGLE runs, we report in Table 3 the values of different energies (see
§4.1) computed for the final field (at τf ). The results are in good agreement with those
reported by Nore et al. (1997a,b). The values of the helicity (see §4.3) are also reported
in Table 3. Note that in this particular case, we expect the helicity to be zero, which
is satisfied for regularized helicity. As already stated by Clark di Leoni et al. (2017),
the regularised helicity is smoother and less noisy, which explains the discrepancies for
helicity in runs TG cIT and TG dIT.

Run Ei
kin Ec

kin Eq Eint H Hreg

TG aIT 0.12901707 4.8667051e-04 7.9239425e-03 1.2995235e-02 1.37e-13 -1.87e-11
TG bIT 0.11334487 2.2334712e-04 4.0373670e-03 6.8223665e-03 2.96e-07 -5.52e-07
TG cIT 0.12884207 1.5065059e-04 2.4895687e-03 4.2864757e-03 3.83e-03 -5.63e-07
TG dIT 0.12968555 9.5590716e-05 1.3476259e-03 2.3466209e-03 -3.94e-04 -9.71e-08

Table 3: TG-QT. Values of different energies and helicity at τf for the runs preparing the Taylor-Green
initial condition, using the imaginary-time ARGLE solver.

7.1.2. Results for the TG-QT
Starting from the initial condition presented in Fig. 4, we used the Strang–splitting

GP solver (see §5.3) to advance the wave function in real time. The final (at t = Tf ) QT
field is displayed in Fig. 5 for runs TG a, TG b and TG c. As explained before, when the
grid resolution Nx is increased, the size of a vortex core ξ diminishes and, consequently,
the density of the tangled vortex lines is increased in the computational box. Meanwhile,
we recall that the grid resolution of the vortex core (δx/ξ) is the same for all simulations.

To compare our results with those reported by Nore et al. (1997a,b), the TG-QT fields
are analysed by providing in Fig. 6 the time evolution of the incompressible (Ei

kin) and
compressible (Ec

kin) parts of the kinetic energy (60) for cases TG a to TG d. For each
case, the incompressible kinetic energy is dominant at the beginning of the simulation,
and slowly decreases in time, while the compressible part increases. We report in Fig. 7
(a) the spectrum of Ei

kin for the case TG c at different time instants of the computation.
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Figure 5: TG-QT. Instantaneous fields computed with the real-time GP solver, starting from the initial
condition presented in Fig. 4. Vortex lines (iso-surfaces of low ρ) of the wave function at final time Tf .
From left to right: grid resolutions Nx = 128, 256, 512 (corresponding to runs TG a, TG b and TG c in
Table 2).

For small k, the spectrum follows a (Kolmogorov-like) power law Ei
kin(k) ∼ k−5/3 (dashed

line in Fig. 7 a), especially for early times of the simulation. These results concerning
the incompressible energy evolution and its spectrum are in very good agreement with
the numerical results reported by Nore et al. (1997a,b) for the grid resolution Nx = 512.
As a novel diagnostic tool of the turbulent field (not presented in Nore et al. (1997a,b)),
we show in Fig. 7 (b) the time-evolution of the second-order structure function S2

//(r)
(see Eq. (37)). For a developed QT field at t = 12, the slope of the structure function
curve at the origin is close to 2, while for large length scales the slope evolves towards 2/3.
Using Eq. (38) to check the structure function calculation, we also plot in Fig. 7 (b) as a
dotted line the value 2

∫
v2
x dx which is reached for large length scales (see Eq. (38)).
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Figure 6: TG-QT. Time evolution of incompressible kinetic energy Ei
kin (a) and compressible kinetic

energy Ec
kin (b) for runs TG a to TG d (see Table 2).
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Figure 7: TG QT. Spectrum of Ei
kin (a) and second–order structure function (b) for the case TG c (see

Table 2).

7.1.3. Accuracy of numerical results
There are two important check–points in validating a QT-GP simulation: the accuracy

in verifying conservation laws (see §2) and the grid convergence. In our numerical
simulations, we monitor the time variation of the number of particles N (see Eq. (54))
and total energy per volume unit E (see Eq. (55)). These two quantities should be
conserved by the GP solver. For the TG-QT simulations, we report in Table 4 initial
and final values for the norm and normalized energy, as well as their relative maximum
variation during the time evolution. Note from Table 4 that N is perfectly conserved,
and energy relative fluctuations δ(E) are less than 0.02%, which is sufficiently small value
to guarantee the validity of the computation.

Run N|t=0 N|t=Tf
δ(N) E|t=0 E|t=Tf

δ(E)
TG a 0.9789997 0.9789997 0.0 0.1504230 0.1504111 7.97e-05
TG b 0.9873160 0.9873160 0.0 0.1244280 0.1244235 3.60e-05
TG c 0.9920083 0.9920083 0.0 0.1357688 0.1357597 6.67e-05
TG d 0.9955732 0.9955732 0.0 0.1275738 0.1275550 1.47e-04

Table 4: TG-QT. Conservation of the number of particles N and energy per volume unit. Initial
(at t = 0) and final values (and t = Tf ) and relative maximum variation, defined following e. g.
δ(E) = maxt∈[0;Tf ] |E(t)− Et=0| /Et=0.

The second important check-point is the grid convergence. To correctly capture
vortices of radius ξ, we need enough discretization points in each vortex core. We
recall that the grid step size was fixed to δx/ξ = 1.338 for all runs, corresponding to
ξkmax = 8

√
2

5 ' 2.26 (see Table 1). To check the influence of this parameter on the
accuracy of the QT simulation, we performed two other runs reported in Table 5, with
double (TG g) or half (TG h) grid step size δx/ξ.

In Table 6, we report the values of different energies obtained at the end of the
imaginary-time ARGLE procedure for these new cases. Relative errors were computed
with respect to reference values of the case TG a. We conclude that a value of ξkmax ' 2,
i. e. δx/ξ = π/2, is sufficient to ensure the grid convergence and good accuracy of
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Run Nx α β ξkmax δx/ξ

TG a 128 0.05 40 2.26 1.388
TG g 64 0.05 40 1.13 2.776
TG h 256 0.05 40 4.52 0.694

Table 5: TG-QT. Supplementary runs used to check the grid convergence of the results (to be compared
to runs in Table 1).

numerical results. To further check this assessment, we also simulated the QT evolution
starting from these runs. We report in Fig. 8 the time evolution of incompressible and
compressible kinetic energies. The similarities between cases TG a and TG h suggest
that the resolution used for the case TG a is fine enough to capture the vortices in the
QT field. This validates the choice of parameters in Table 1.

TG a TG g (rel. err.) TG h (rel. err.)
Ei

kin 1.29017e-01 1.29896e-01 (6.82e-03) 1.29562e-01 (4.23e-03)
Ec

kin 4.86671e-04 1.24066e-03 (1.55e+00) 2.72478e-04 (4.40e-01)
Eq 7.92394e-03 1.08017e-02 (3.63e-01) 7.80383e-03 (1.52e-02)
Eint 1.29952e-02 9.94301e-03 (2.35e-01) 1.30274e-02 (2.48e-03)
Ev 7.10060e-01 6.98672e-01 (1.60e-02) 7.10095e-01 (4.98e-05)

Table 6: TG-QT. Energies computed from φT G, the wave function obtained at the end of the imaginary-
time ARGLE procedure for cases TG a, TG g and TG h. Relative errors (rel. err.) were computed with
respect to reference values of the case TG a.
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Figure 8: TG-QT. Time evolution of incompressible Ei
kin (a) and compressible Ec

kin (b) energies for cases
TG a, TG g, TG h, used to check grid convergence.
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7.2. Benchmark #2: Arnold-Beltrami-Childress quantum turbulence (ABC-QT)
The ABC initial field was prepared as described in §6.2. We display in Table 7 the

values of the time step δt used in the GP solver (see §5.3) and the final time Tf of each
simulation. The parameters of the corresponding imaginary-time (IT) run cases preparing
the initial condition using the ARGLE solver are also presented, with δτ and τf the
imaginary-time step and final value at convergence, respectively.

Run Nx δt Tf

ABC a 128 8.0e-4 10
ABC b 256 4.0e-4 10
ABC c 512 2.0e-4 10

Run Nx δτ τf

ABC aIT 128 4.0e-3 30
ABC bIT 256 2.0e-3 30
ABC cIT 512 1.0e-3 30

Table 7: Runs for the ABC-QT case. Parameters used in the GP solver (cases ABC a to ABC c) and the
imaginary-time (IT) ARGLE solver (cases ABC aIT to ABC cIT). For each space resolution Nx, the
corresponding physical and numerical parameters are displayed in Table 1.

7.2.1. Results for the imaginary time (ARGLE) procedure
Following (82) and (83), the initial condition for the imaginary–time ARGLE procedure

is obtained only by phase manipulations of the wave function. Therefore, vortices are
not present at τ = 0, but they nucleate during the imaginary-time evolution, which a
dissipative process. The obtained fields with vortices at the end of the ARGLE procedure
are illustrated in Fig. 9. Note that, compared to the TG fields in Fig. 4, the distribution
of vortices in the computational box displays no symmetries with respect to central planes.
This is the first feature that makes the ABC case different from the TG case.

Figure 9: ABC-QT. Initial condition computed with the imaginary-time ARGLE solver. Vortex lines
(iso-surfaces of low ρ) of the converged wave function φABC at final imaginary-time τf . From left to
right: grid resolutions Nx = 128, 256, 512 (corresponding to runs ABC aIT, ABC bIT and ABC cIT in
Table 7).

The second differentiating feature is the presence of helicity in the ABC flow obtained
after the ARGLE procedure. We recall that the helicity of the TG flow is strictly zero
(see Table 3). We report in Table 8 the values of different energies (see §4.1) and helicity
computed for the final ABC field (at τf ). As expected, the value of the incompressible
kinetic energy is close to 1, which corresponds to the energy of the classical ABC flow.
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For the helicity, the theoretical value for the classical ABC flow is 3. A close value to 3 is
obtained only for large grid resolutions (Nx ≥ 256), i. e. for sufficiently small values of
the vortex size ξ.

Run Ei
kin Ec

kin Eq Eint H Hreg

ABC aIT 0.9485114 0.0014218 0.0277287 0.0430379 2.4106982 2.4726091
ABC bIT 0.9792042 0.0008142 0.0144931 0.0237201 2.7439625 2.6532860
ABC cIT 0.9884992 0.0006486 0.0073802 0.0124975 2.7217161 2.7365301

Table 8: ABC-QT. Values of different energies and helicity at τf for the runs preparing the ABC initial
condition, using the imaginary-time ARGLE solver.

For these computations, the ARGLE procedure required a significant computational
time and was therefore stopped before the convergence criterion (65) was satisfied. The
complex inhomogeneous topological structure of the ABC flow and the large number of
vortices in the flow slowed-down the convergence of the imaginary-time ARGLE procedure.
We observed that the energy could be further slightly diminished, but the resulting final
stationary state displayed only slight changes in the position of the peripheral vortices
in the computational box. To ensure the validity of the ARGLE solution, we estimated
the criterion (66) by monitoring in Fig. 10a the imaginary-time evolution of energy
fluctuations defined as |Ev(φn+1)− Ev(φn)|/ (δτEv(φn)), with Ev expressed by (61).
The convergence criterion (66) is satisfied to a fairly good degree of precision (10−3).
Figure 10b shows the spectra of Ei

kin, the incompressible kinetic energy of ARGLE
solutions. This is an important benchmark verification, since Ei

kin represents the most
important part in the total energy of the ABC super-flow (see Table 8). The similar
slopes of the spectra for large wave numbers k indicate that the energy distribution of
the three ABC flows are similar at small scales. The low-k part of the spectrum (k � kξ)
reproduces the classical spectrum which has only 2 nonzero modes, k = 1, 2. The slope
for k � kξ is −3 (i. e. Ei

kin(k) ∼ k−3). This feature of the high-k spectrum is detailed in
Krstulovic and Brachet (2010).
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Figure 10: ABC-QT. (a) Relative fluctuation of the total energy (|Ev(φn+1)− Ev(φn)|/ (δτEv(φn)))
during the ARGLE computation. (b) Spectrum of Ei

kin, the incompressible kinetic energy of ARGLE
solutions. Results for cases ABC aIT, ABC bIT and ABC cIT described in Table 7.
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7.2.2. Results for the ABC-QT
Starting from the initial condition presented in Fig. 9, we used the Strang–splitting

GP solver (see §5.3) to advance the wave function in real time. The final (at t = Tf )
QT field is displayed in Fig. 11 for runs ABC a, ABC b and ABC c. As for the TG
case, when the grid resolution Nx is increased, the size of a vortex core ξ diminishes and,
consequently, the density of the tangled vortex lines is increased.

Figure 11: ABC-QT. Instantaneous fields computed with the real-time GP solver, starting from the
initial condition presented in Fig. 9. Vortex lines (iso-surfaces of low ρ) of the wave function at final time
Tf . From left to right: grid resolutions Nx = 128, 256, 512 (corresponding to runs ABC a, ABC b and
ABC c in Table 7).

The time evolution of the incompressible kinetic energy Ei
kin and the regularized

helicity Hreg (see Eq. (43)) are shown in Fig. 12. These results are in good agreement
with those reported by Clark di Leoni et al. (2017).
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Figure 12: ABC-QT. Time evolution of incompressible kinetic energy Ei
kin (a) and regularized helicity

Hreg (b) (see Eq. (43)).

To analyze the turbulent super-flow, we plot in Fig. 13 spectra for the incompressible
kinetic energy Ei

kin (panel a) and the regularized helicity Hreg (panel b) at different time
instants and the second-order structure function S2

//(r) (panel c). We plot with dashed
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Figure 13: ABC-QT. Analysis of the turbulent super-flow. Spectrum of incompressible kinetic energy
Ei

kin (a) and regularized helicity Hreg (b) at different time instants for case ABC c. Dashed lines represent
reference power laws with slope −5/3. Panel (c) displays the second order structure function for the
same case ABC c and same time instants.

lines in Figs. 13a and 13b the reference (Kolmogorov-like) power laws ε2/3k−5/3 for Ei
kin

and ηε−1/3k−5/3 for helicity, respectively. The constants ε and η were computed as:

ε = − dEi
kin
dt

∣∣∣∣
t=10

, η = − dH

dt

∣∣∣∣
t=10

. (100)

We note from Figs. 13a and 13b that for t > 5, both energy and helicity Hreg spectra
exhibit at large scales a power law variation with exponent −5/3, compatible with a dual
energy and helicity cascade. Again, this result is in good agreement with the results of
Clark di Leoni et al. (2017). The novel diagnostic tool introduced in the previous section
for the TG flow is also performed with the ABC flow by computing the second–order
structure function S2

//(r) (see Eq. (37)). Figure 13c displays the structure function for
the same case ABC c and same time instants considered for plotting spectra. A similar
evolution as noted for the TG case (see Fig. 7) is observed: the slope of the structure
function curve at the origin is close to 2, and, for large length scales, the asymptotic value
2
∫
v2
x dx (dotted line) is reached.
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7.2.3. Accuracy of numerical results and influence of the Mach number
As for the TG case, we monitor the time variation of the number of particles N (see

Eq. (54)) and total energy per volume unit E (see Eq. (55)). The accuracy to which these
two quantities are conserved by the GP solver is reported in Table 9 initial and final values
for the norm and normalized energy, as well as their relative maximum variation during
the time evolution. Note from Table 4 that N is perfectly conserved, and energy relative
fluctuations δ(E) are less than 0.01%, which is sufficiently small value to guarantee the
validity of the computation.

Run N|t=0 N|t=Tf
δ(N) E|t=0 E|t=Tf

δE

ABC a 0.9410138 0.9410138 0.0 1.0206996 1.0206400 5.98e-05
ABC b 0.9647786 0.9647786 0.0 1.0182316 1.0181689 6.18e-05
ABC c 0.9796053 0.9796053 0.0 1.0090255 1.0089631 6.19e-05

Table 9: ABC-QT. Conservation of the number of particles N and energy per volume unit. Initial
(at t = 0) and final values (and t = Tf ) and relative maximum variation, defined following e. g.
δ(E) = maxt∈[0;Tf ] |E(t)− Et=0| /Et=0.

Another interesting question that can be addressed using the ABC flow is the influence
of the Mach number on the QT dynamics. Since the velocity v is singular at the vortex
center r = 0, we considered in defining the local Mach number the quantity √ρv which
is not singular (v ∼ 1/r and √ρ ∼ r, see §3.2). We thus computed two representative
values: a maximum Mach number Mmax based on the maximum superfluid velocity, and
a Mach number Mrms based on averaged values:

Mmax :=
‖√ρv‖L∞(D)

c
, Mrms :=

‖√ρv‖L2(D)

c
√
L3

=
√

2Ekin

c
. (101)

Keeping c and ξ constant, one can change the Mach number in the ABC flow by tuning the
values of the parameters A,B,C in (83). Using as reference the case ABC c (Nx = 512)
we performed two new runs for which the parameters are displayed in Table 10. The
values of constants A,B,C were divided (ABC c1) or multiplied (ABC c2) by a factor of
2. As a result, compared to case ABC c, the velocities are divided (resp. multiplied) by
2 for case ABC c1 (resp. ABC c2). The values for the Mach number reported in Table
10 were computed at the end of the ARGLE procedure preparing the initial condition.
Figure 14 shows the time evolution for the two values of the Mach number, Mmax and
Mrms computed by the (real-time) GP solver. The ratio of 2 is well conserved in time,
though the values are varying significantly. This proves that tuning the values of constants
A,B,C is a simple and practical approach in modifying the Mach number of the QT
super-flow.

name (A,B,C) Nx Mmax Mrms

ABC c (0.9, 1, 1.1)/
√

3 512 1.486860 0.703259
ABC c1 (0.9, 1, 1.1)/(2

√
3) 512 0.836509 0.357021

ABC c2 2(0.9, 1, 1.1)/
√

3 512 2.800959 1.385344

Table 10: ABC-QT. Runs used to test of the influence of the Mach number. Compared to run ABC c
(see Table 7), only the constants A,B,C in defining the ABC flow were modified (see Eq. (83)).
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Figure 14: ABC-QT. Time evolution of the Mach number Mmax (a) and Mrms (a) for cases ABC c,
ABC c1 and ABC c2 (see Table 10).

We present in Fig. 15 the time evolution of incompressible kinetic energy Ei
kin and

regularized helicity Hreg for new cases with different Mach numbers. As expected from
the analysis above, the energy and helicity associated with the classical flow vABC are
divided (resp. multiplied) by 4 for case ABC c1 (resp. ABC c2). We note that the
time evolution of these main quantities depends on the Mach number. To assess on the
distribution of the incompressible kinetic energy among scales, we plotted in Fig. 16
spectra of Ei

kin at significant time instants, t = 5 and final time t = Tf = 10. The spectra
for the three cases are quite similar showing that the obtained dynamics of the QT is
equivalent when varying the Mach number of the flow.
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Figure 15: ABC-QT. Influence of the Mach number. Time evolution of the incompressible kinetic energy
Ei

kin (a) and regularized helicity Hreg (b). To be compared with curves in Fig. 12.
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Figure 16: ABC-QT. Influence of the Mach number. Spectrum of the incompressible kinetic energy Ei
kin

for case ABC c, ABC c1, ABC c2, at time instants t = 5 (a) and t = Tf = 10 (b).

7.3. Benchmark #3: Smoothed random phase quantum turbulence (SRP-QT)
The SRP initial field was prepared as described in §6.3. The advantage of this new

initial condition is that the time-imaginary ARGLE simulation is no longer necessary in
the preparation of the initial field. We display in Table 11 the values of the time step δt
used in the GP solver (see §5.3), the final time Tf of each simulation, and the parameters
K (maximum amplitude of the phase) and Nr (number of random values) of the method
generating the phase field (see Fig. 2). We recall that the characteristic velocity of the
generated flow field results is v = 2α(KNr/π), and the corresponding theoretical Mach
number M =

√
2αKNr/π

√
β.

Run Nx δt Tf K Nr

SRP a 128 1/1024 8 8π 4
SRP b 256 1/2048 8 16π 4
SRP c 512 1/4096 8 32π 4

Table 11: Runs for the SRP-QT case. For each space resolution Nx, the corresponding physical and
numerical parameters are displayed in Table 1.

Figure 17 illustrates the vortex structures in the QT super-flow generated with this
method. Compared to TG and ABC cases, in the SRP case vortices nucleate progressively
and do not display long vortex lines. A very fine grain structure of vortices is observed in
all SRP runs.

To analyse the SRP-QT flow we plotted in Fig. 18a the time evolution of the
compressible Ec

kin and incompressible Ei
kin kinetic energies. An ensemble average for 10

different (random) initial conditions was taken to display the results. Since the initial
field (at t = 0) does not contain vortices, the incompressible kinetic energy Ei

kin is initially
zero and subsequently increases due to vortex nucleations. After reaching the maximum
value at t ∼ 0.5, Ei

kin gradually decreases to the end of the simulation (t = Tf ). During
the entire time evolution, the dynamics of the flow is dominated by the compressible
kinetic energy Ec

kin, which is always larger than Ei
kin. Figure 18b shows the spectrum

of Ei
kin. As for TG and ABC cases, a Kolmogorov-like scaling is obtained, with a −5/3
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Figure 17: SRP-QT. Instantaneous fields computed with the real-time GP solver, starting from the initial
condition presented in Fig. 2. Vortex structures (iso-surfaces of low ρ) of the wave function at final time
Tf . Grid resolution Nx = 512, corresponding to run SRP c in Table 11).

power-law at low wave numbers k. Hereof, the SRP-QT flow is statistically similar to the
TG and ABC QT flows and can be used in a detailed parametric study of the decay of
quantum turbulence (which is beyond the scope of this contribution).
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Figure 18: SRP-QT. (a) Time evolution of the compressible Ec
kin and incompressible Ei

kin kinetic energies.
(b) Spectrum of Ei

kin at different time instants. Case SRP c (Nx = 512). In both panels, the results
represent an ensemble average for 10 different (random) initial conditions.
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7.4. Benchmark #4: Random vortex rings quantum turbulence (RVR-QT)
The RVR initial field was prepared as described in §6.4. Like in the SRP case, building

this new initial condition avoids the use of the time-imaginary ARGLE computation. We
display in Table 12 the values of the time step δt used in the GP solver (see §5.3), the
final time Tf of each simulation, the parameter NV representing the number of pairs of
vortex rings seeded in the initial field, the radius R of a vortex ring, and the distance d
between the vortex rings forming a pair (see Eq. (99)).

Run Nx δt Tf NV R d

RVR a 128 1/1024 8 200 π/2 π

RVR b 256 1/2048 8 400 π/2 π

RVR c 512 1/4096 8 800 π/2 π

Table 12: Runs for the RVR-QT case. For each space resolution Nx, the corresponding physical and
numerical parameters are displayed in Table 1.

Note that in Fig. 3 we represented, to illustrate the method, a few number of vortex
pairs (NV =1, 20 and 50). In the GP calculations we used a much larger value for NV , up
to 800 for the case RVR c. The initial field for the three considered cases is displayed
in Fig. 19. Like in the TG and ABC cases, when the grid resolution Nx is increased, ξ
diminishes and, consequently, thinner vortex rings are seeded in the initial field.

Figure 19: RVR-QT. Initial field containing NV randomly distributed vortex ring pairs. Vortex lines
(iso-surfaces of low ρ) of the wave function. From left to right: grid resolutions Nx = 128, 256, 512 and
NV = 200, 400, 800 (corresponding to runs RVR a, RVR b and RVR c in Table 12).

The obtained RVR-QT flow is illustrated in Fig. 20. Multiple vortex ring reconnections
lead to a dense vortex distribution in the QT field, similar to that obtained for the ABC
flow (see Fig. 11).

For the analysis of the RVR-QT flow we provide in Fig. 21(a) the time evolution of the
compressible Ec

kin and incompressible Ei
kin kinetic energies for the case RVR c. Since the

initial distribution of vortex rings pairs is random in the computational box, we present
the ensemble average results for 10 runs with random positions of the same number of
vortex ring pairs (NV = 800). In the early stages of the time evolution (t < 1), Ei

kin is
dominant. The compressible kinetic energy Ec

kin starts to increase at t ∼ 1, due to sound
emissions through vortex reconnections. This evolution is opposite to that observed for
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Figure 20: RVR-QT. Instantaneous fields computed with the real-time GP solver, starting from the
initial condition presented in Fig. 19. Vortex lines (iso-surfaces of low ρ) of the wave function at final
time Tf . From left to right: grid resolutions Nx = 128, 256, 512 (corresponding to runs RVR a, RVR b
and RVR c in Table 12).

the SRP-QT cases. Figure 21b shows the spectrum of Ei
kin. Like in the SRP cases (see

Fig. 18), we note a Kolmogorov-like scaling of the spectrum, with a −5/3 power-law at
intermediate wave numbers k.
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Figure 21: RVR-QT. (a) Time evolution of the compressible Ec
kin and incompressible Ei

kin kinetic energies.
(b) Spectrum of Ei

kin at different time instants. Case RVR c (Nx = 512). In both panels, the results
represent an ensemble average for 10 different runs, with random initial distribution of NV = 800 vortex
ring pairs in the computational domain.
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8. Conclusion

We simulated in this paper quantum turbulence superfluid flows described by the
Gross-Pitaevskii equation. Numerical simulations were performed using a parallel (MPI-
OpenMP) code based on a pseudo-spectral spatial discretization and second order splitting
for the time integration. As expected from the theoretical numerical analysis, this approach
ensured an accurate capture of the dynamics of the flow, with a perfect conservation
of the number of particles and a negligible drift in time of the total energy. Several
configurations of QT were simulated using four different initial conditions: Taylor-Green
(TG) vortices, Arnold-Beltrami-Childress (ABC) flow, smoothed random phase (SRP)
fields and random vortex rings (RVR) pairs. Each of these case was described in detail by
setting corresponding benchmarks that could be used to validate/calibrate new GP codes.
Particular care was devoted in describing dimensionless equations, characteristic scales
and optimal numerical parameters. We presented values, spectra and structure functions
of main quantities of interest (energy, helicity, etc.) that are useful to describe the
turbulent flow. Some general features of QT were identified, despite the variety of initial
states: the spectrum of the incompressible kinetic energy exhibits a Kolmogorov-type
−5/3 power-law scaling for the large scales, the flow dynamics is characterized by a
continuous transfer between incompressible and compressible energy, etc.

The first two benchmarks (TG and ABC) are classical and inspired from classical
turbulence. They start from defining a velocity field containing vortices and use an
imaginary-time ARGLE procedure to reduce the acoustic emission of the initial field. The
last two benchmarks (SRP and RVR) are new and based on the direct manipulation of the
wave function. The new initial conditions have the advantage to be simple to implement
and to avoid supplementary computations through the ARGLE procedure. The SRP
initial condition has the particularity of being vortex free, with kinetic energy dominated
at initial stages by its compressible part. The situation is reversed in the RVR initial
condition, since at early stages the incompressible kinetic energy dominates. Therefore,
the new initial conditions could be used as new QT settings to explore various physical
phenomena, such as the interaction of particles with quantized vortices in QT (Giuriato
and Krstulovic, 2019). Another possible use of the new SRP and RVR initial conditions
is for the simulation of QT in atomic Bose-Eintein condensates (BEC). GP-QT dynamics
in BECs is generally triggered by directly manipulating the wave function field. Berloff
and Svistunov (2002) used a randomly distributed initial wave function field, Parker
and Adams (2005) applied a simple rotation of the initial field, Kobayashi and Tsubota
(2007b) used combined rotations around two axes, while White et al. (2010) suggested a
random phase imprinting. The extension of our SRP and RVR models to BEC-QT will
be reported in a forthcoming contribution.

Supplementary images and movies depicting the dynamics of QT-GP cases simulated
in this paper are provided as Supplemental Material at
http://qute-hpc.math.cnrs.fr/2020 03 QT GP.html.
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Appendix A. Parallel performance of the code

Appendix A.1. Execution time
Execution times for runs ABC a to ABC c and ABC aIT to ABC cIT are reported

in Table A.13. When switching from one case to the next one, we doubled the total

Case Nx Iterations MPI proc. Execution time (s) ratio
ABC aIT 128 7500 56 539.126 0.000257075
ABC bIT 256 15000 112 5940.076 0.000354056
ABC cIT 512 30000 224 53066.445 0.000395375
ABC a 128 12500 56 700.524 0.000334036
ABC b 256 25000 112 7364.754 0.000438973
ABC c 512 50000 224 63397.341 0.000472346

Table A.13: Execution time for ABC runs. The last column reports the execution time divided by the
number of degrees of freedom (N3

x).

number of iterations and also the number of processes. We expected a small variation
of the value of the execution time divided by the grid resolution. For the ARGLE
procedure, we monitored an efficiency of 65% from case ABC aIT to case ABC cIT. For
the time-dependent GP simulation, we obtained an efficiency of 70% from case ABC a
to case ABC c. Note that the measured time is the total time for the execution of the
program, not solely the computational part of the code.

Appendix A.2. Strong scalability of GPS
Strong scalability results of the GPS code are presented in this section. To test the

code, we used both CRIANN Myria and Idris Turing BlueGene/Q (BG) supercomputers.
The supercomputer called Myria has 366 nodes, each with 28 cores (Intel Broadwell 2.4
GHz) for a total of 10,248 cores and 419 TFLOPs. The supercomputer BG has 6144
nodes, each with 16 cores (IBM PowerPC A2 1.6 GHz) for a total of 98,304 cores and
1258 PFLOPs. It must be noted that the BG supercomputer has been built to solve the
bottleneck due to memory bandwidth and latency, by reducing the clock of each core.
Myria has a much higher clock speed without a larger memory bandwidth and a similar
interconnection between nodes. As a result, the network and memory bandwidth are
playing a larger role in the performance of the code when run on Myria supercomputer
than on BG. The code GPS used in this work, was first developed during the French
project ANR Becasim Parnaudeau et al. (2015) and it was tuned on the BG supercomputer
to optimize its scalability. In this work, the supercomputer Myria was used in order to
obtain present results. We present strong scalability results on both supercomputers.
A 3D test case (with grid resolutions up to 20483) was run using a different number of
processes (up to 4, 096 for Myria, and 64, 536 for BG) using the Strang second order
splitting scheme and the execution time was monitored.

The first strong scalability test was performed using only MPI (Fig. A.22). It shows
scalability and speed-up close to ideal performances on BG, while on Myria the speed-up is
good but with a lower efficiency. The efficiency on Myria is above 75% up to 256, 512, 1024
and 2048 processes for discretizations of 1283, 2563, 5123 and 10243, respectively. On the
BG supercomputer, the efficiency is above 75% up to 4,096, 16,384 and 65,536 processes
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for discretizations of 5123, 10243 and 20483, respectively. The maximum acceleration
measured is 2,152 on Myria using 4096 processes (N = 10243) and 56,987 on BG using
65536 processes (N = 20483).
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Figure A.22: Parallel performance (speed-up) of the GPS code when computing 3D cases with 1283,
2563, 5123, 10243 and 20483 grid points. Strong scalability test using only MPI (from 64 to 64, 536)
processes. Dashed lines represent ideal speed-up.

For a further assessment of the parallel capabilities of the code, another scalability
test using MPI and up to 4 OpenMP threads per MPI process was performed (Fig.
A.23). Using OpenMP on the BG supercomputer resulted in an efficiency of about 80%
with 4 threads. The efficiency decreases drastically with more OpenMP threads. For
computations with the GPS, using OpenMP is important to decrease the cost of the
input/output operations, if the run needs more than 10,000 cores. This feature could be
significantly affected by the architecture of the processor available on the supercomputer.
Using Myria (with no thread affinity enabled), we noticed that using more than 2 threads
per process should be avoided.
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Marojević, Z., Göklü, E., Lämmerzahl, C., 2016. ATUS-PRO: A FEM-based solver for the time-dependent
and stationary Gross-Pitaevskii equation. Computer Physics Communications 202, 216 – 232.

Minguzzi, A., Succi, S., Toschi, F., Tosi, M. P., Vignolo, P., 2004. Numerical methods for atomic quantum
gases with applications to Bose-Einstein condensates and to ultracold fermions. Physics Reports 395,
223–355.

Muruganandam, P., Adhikari, S., 2009. Fortran programs for the time-dependent Gross-Pitaevskii
equation in a fully anisotropic trap. Comput. Phys. Comm. 180 (10), 1888–1912.

Navon, N., Gaunt, A., Smith, R., Hadzibabic, Z., 2016. Emergence of a turbulent cascade in a quantum
gas. Nature 539, 72.

Neu, J. C., 1990. Vortices in complex scalar fields. Physica D 43, 385–406.
Nore, C., Abid, M., Brachet, M., 1997a. Decaying Kolmogorov turbulence in a model of superflow. Physics

of Fluids 9 (9), 2644–2669.
Nore, C., Abid, M., Brachet, M., 1997b. Kolmogorov turbulence in low-temperature superflows. Physical

Review Letters 78 (20), 3896–3899.
Nore, C., Brachet, M., Fauve, S., 1993. Numerical study of hydrodynamics using the nonlinear Schrödinger

equation. Physica D: Nonlinear Phenomena 65 (1-2), 154–162.
Parker, N., Adams, C., 2005. Emergence and decay of turbulence in stirred atomic bose-einstein conden-

sates. Physical Review Letters 95 (14).
Parnaudeau, P., Suzuki, A., Sac-Epée, J.-M., 2015. GPS: An efficient & spectrally accurate code for

computing Gross-Pitaevskii equation. ISC-2015, Research Posters Session, 2015, Germany.
Pitaevskii, L. P., Stringari, S., 2003. Bose-Einstein condensation. Clarendon Press, Oxford.
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