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Abstract

We present and distribute a parallel finite-element toolbox written in the free software
FreeFEM for computing the Bogoliubov-de Gennes (BdG) spectrum of stationary solutions
to one- and two-component Gross-Pitaevskii (GP) equations, in two or three spatial
dimensions. The parallelization of the toolbox relies exclusively upon the recent interfacing
of FreeFEM with the PETSc library. The latter contains itself a wide palette of state-of-the-
art linear algebra libraries, graph partitioners, mesh generation and domain decomposition
tools, as well as a suite of eigenvalue solvers that are embodied in the SLEPc library.
Within the present toolbox, stationary states of the GP equations are computed by
a Newton method. Branches of solutions are constructed using an adaptive step-size
continuation algorithm. The combination of mesh adaptivity tools from FreeFEM with
the parallelization features from PETSc makes the toolbox efficient and reliable for the
computation of stationary states. Their BdG spectrum is computed using the SLEPc
eigenvalue solver. We perform extensive tests and validate our programs by comparing the
toolbox’s results with known theoretical and numerical findings that have been reported
in the literature.
Keywords: Bose-Einstein condensate, Gross-Pitaevskii equation, Bogoliubov-de Gennes
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No. of lines in distributed program, including test data, etc.: 4,054
No. of bytes in distributed program, including test data, etc.: 200Ko
Distribution format: .zip
Computer: PC, Mac, Super-computer.
Operating system: Mac OS, Linux, Windows.

Nature of problem: Among the plethora of configurations that may exist in Gross-Pitaevskii
(GP) equations modeling one or two-component Bose-Einstein condensates, only the ones that
are deemed spectrally stable (or even, in some cases, weakly unstable) have high probability
to be observed in realistic ultracold atoms experiments. To investigate the spectral stability of
solutions requires the numerical study of the linearization of GP equations, the latter commonly
known as the Bogoliubov-de Gennes (BdG) spectral problem. The present software offers an
efficient and reliable tool for the computation of eigenvalues (or modes) of the BdG problem for
a given two- or three-dimensional GP configuration. Then, the spectral stability (or instability)
can be inferred from its spectrum, thus predicting (or not) its observability in experiments.

Solution method: The present toolbox in FreeFEM consists of the following steps. At first, the GP
equations in two (2D) and three (3D) spatial dimensions are discretized by using P2 (piece-wise
quadratic) Galerkin triangular (in 2D) or tetrahedral (in 3D) finite elements. For a given
configuration of interest, mesh adaptivity in FreeFEM is deployed in order to reduce the size of
the problem, thus reducing the toolbox’s execution time. Then, stationary states of the GP
equations are obtained by a Newton method whose backbone involves the use of a reliable and
efficient linear solver judiciously selected from the PETSc1 library. Upon identifying stationary
configurations, to trace branches of such solutions a parameter continuation method over the
chemical potential in the GP equations (effectively controlling the number of atoms in a BEC)
is employed with step-size adaptivity of the continuation parameter. Finally, the computation
of the stability of branches of solutions (i.e. the BdG spectrum), is carried out by accurately
solving, at each point in the parameter space, the underlying eigenvalue problem by using the
SLEPc2 library. Three-dimensional computations are made affordable in the present toolbox by
using the domain decomposition method (DDM). In the course of the computation, the toolbox
stores not only the solutions but also the eigenvalues and respective eigenvectors emanating from
the solution to the BdG problem. We offer examples for computing stationary configurations
and their BdG spectrum in one- and two-component GP equations.
Running time: From minutes to hours depending on the mesh resolution and space dimension.

1. Introduction

The study of Bose-Einstein condensates (BECs) has admittedly enjoyed a substan-
tial interest for more than two decades since their first observation in ultracold atoms
experiments [1, 2]. Both theoretical and experimental developments have been summa-
rized in [3, 4]. These studies revealed the emergence of interesting wave configurations
including vortices and vortex structures [5–8], and the quest for experimentally creating
and studying new states has been an exciting and active area of research. Indeed, a

1https://petsc.org/
2https://slepc.upv.es
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plethora of experimental techniques have been developed including imprinting techniques
[9–11], stirring the condensate above a certain critical angular speed [12, 13], counterflow
techniques [14], the use of anisotropic potentials [15], nonlinear interference between
different condensate fragments [16] as well as the so-called Kibble-Zurek mechanism [17],
among many others. The variety of configurations that have emerged through these
studies is vast, and has sparked theoretical and computational investigations over the
years. Some basic examples of such structures are dark solitons, single vortex lines (with
I-, U- or S-shaped ones in rotated BECs) [18], as well as vortex rings [19] (see also the
review [20] and references therein). More complex states, such as multiple vortex lines and
rings, vortex stars, and hopfions have also been reported in the literature (see for example
[21–23]), together with recent computational techniques for vortex identification [24].
Alongside prototypical bound modes in multi-component BECs that can be identified
(e.g. dark-bright [25], vortex-bright [26, 27] and dark-antidark [28], as well as vortex-ring-
bright and vortex-line-bright solitons [29]), more exotic configurations have been reported,
including skyrmions [30, 31], monopoles and Alice rings [32, 33]. Even more, with the
introduction of state-of-the-art bifurcation techniques for partial differential equations
(PDEs), more and more multi-component solutions were identified [34, 35].

The principal model for the above theoretical and computational studies has been the
Gross-Pitaevskii (GP) equation [4] (and variants, including multi-component settings),
which is a PDE known to describe the properties of a BEC in the mean-field approximation.
Note that the GP model is a nonlinear Schrödinger (NLS) equation that incorporates
an external potential to confine the atoms in the condensate [4]. One of the key steps
in these studies, however, is concerned with the response of the pertinent waveforms
under the presence of a perturbation induced, e.g. by imperfections in the initial state
preparation in the BEC. This crucial step involves the study of the spectral stability
[36] of the solution to the GP equation at the theoretical/computational level, and it
is a two-fold process. At first, a stationary solution to the GP equation is identified by
means of (spatial) discretization methods and root-finding, i.e. fixed-point techniques.
Then, the GP equation is linearized about this (stationary) solution, thus resulting into
a spectral (eigenvalue) problem, known as the Bogoliubov-de Gennes (BdG) problem
[37, 38]. The numerical solution of the BdG problem provides important information
about the spectral characteristics of waveforms that may have high probability to be
observed numerically if they are deemed stable (or even weakly unstable, depending on
the growth rates of the unstable eigenvalues).

Up until now, there has been a wide variety of publicly available programs (written in
C, Fortran, MATLAB, and FreeFEM) dedicated exclusively to the computation of stationary
states to the GP equation that employ spectral methods [39–41], finite elements [42, 43]
(see also [44]), and finite differences [45–49]. In almost all of these studies, stationary
solutions are computed by solving the GP equation under the constraint of the conservation
of the number of atoms; a large variety of numerical algorithms can be used for the
constrained problem, among which the celebrated normalized gradient method [50] is
one of the most popular. Alternative approaches for the computation of solutions to
the GP equation involves the re-formulation of the problem as a bifurcation one, where
the chemical potential (controlling the number of atoms) is varied by using numerical
continuation [51] coupled with Newton’s method [52]. This approach has been adopted in
a series of studies that employ finite-element [28, 34, 53, 54], finite-difference [22, 23, 34],
as well as spectral (spatial) discretization methods [23]. However, to the best of our
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knowledge, a limited number of publicly available codes for studying the BdG spectrum
of configurations to the GP equation exist. One such a code (written in Fortran) is
the FACt toolbox [55] which computes thermal fluctuations in BECs by solving the
associated BdG equations. Recent efforts in that same vein involve the publicly available
toolbox in FreeFEM that was developed by a subset of the present authors [56]. It utilizes
mesh adaptation techniques (that are built-in in FreeFEM ) and employs the ARPACK
eigenvalue solver [57] (which is interfaced with FreeFEM) for solving the BdG equations,
although the calculations therein are carried out in sequential mode.

Building upon the recent work in [56], we present and distribute herein a parallel
finite-element toolbox written in FreeFEM for computing the Bogoliubov-de Gennes (BdG)
spectrum of stationary solutions to one- and two-component Gross-Pitaevskii (GP)
equations in 2D or 3D. The parallelization of the toolbox relies exclusively on the recent
interfacing of FreeFEM with the PETSc library [58] (see also [59]). The combination of mesh
adaptivity and the simplification in the use of parallel linear solvers in FreeFEM (such as
distributed direct solvers and domain decomposition methods [60, 61]) renders the present
toolbox an ideal framework for computing configurations in one- and two-component
BECs in 2D or 3D. This further paves the path for the efficient and reliable computation
of the BdG spectrum by using the SLEPc [62] library.

Our ultimate goal with the present toolbox is to offer a versatile and reliable tool to the
BEC community which can perform parallel computations for exploring the BdG spectrum
of 2D and 3D (one- or two-component) configurations of interest within reasonable
computational time. Finally, the advantage of FreeFEM in hiding all technicalities of the
finite-element method and using a syntax close to the mathematical formulation of the
problem allows the user to focus on the mathematical and physical aspects of the problem
and easily make changes in the codes to simulate new configurations.

The structure of the paper is as follows. In Sec. 2, we introduce the one- and two-
component GP equations together with the associated BdG models. In Secs. 3 and 4, we
describe the numerical methods for computing stationary states to the GP equations and
their respective BdG spectra. We illustrate the validation of our programs in Secs. 5 and
6, whereas the architecture of the programs and the description of parameter and output
files is discussed in Sec. 7. Finally, the main features of the toolbox are summarized in
Sec. 8, where we additionally offer some of its potential extensions.

2. The Gross-Pitaevskii model and Bogoliubov-de Gennes equations

In this section, we present the theoretical setup of the toolbox. We introduce the one-
and two-component Gross-Pitaevskii (GP) and Bogoliubov-de Gennes equations in Secs.
2.1 and 2.2, respectively. We would like to stress out that the model equations below are
expressed in nondimensional form, and further details about the physical units of the
model equations together with their scaling can be found in our recent contribution [56]
(and references therein). For the user’s convenience, we include with this toolbox the
example scripts (see files phys to adim 1comp.edp and phys to adim 2comp.edp in the
Tools scaling subdirectory) that compute non-dimensional parameters from physical
values corresponding to several experimental studies published in the literature. These
programs could guide the user in linking parameters of existing experiments with non-
dimensional parameters used in this contribution (and, more generally, in theoretical
studies).
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2.1. The one-component case: Gross-Pitaevskii and Bogoliubov-de Gennes equations
The spatio-temporal behavior of a Bose-Einstein condensate (BEC) is described by

the Gross-Pitaevskii (GP) equation [4]:

i∂ψ
∂t

= −1
2∇2ψ + Ctrapψ + β|ψ|2ψ, (1)

where ψ(x, t) : D ×R+ → C is the macroscopic complex-valued wave function, defined
over the domain D ∈ Rd, with d the spatial dimension, i.e. d = 1, 2, 3. In Eq. (1), β
is the nonlinearity strength corresponding to repulsive (β > 0) or attractive (β < 0)
interactions. The external potential Ctrap(x) confining the atoms in the condensate is:

Ctrap(x, y, z) = 1
2

(
ω2

xx
2 + ω2

yy
2 + ω2

zz
2)

, (2)

where ωx,ωy,ωz are the trapping frequencies. Using in Eq. (1) the standing wave ansatz
ψ(x, t) = ϕ(x)e−iµt, with µ the chemical potential, we obtain the stationary GP equation:

−1
2∇2ϕ+ Ctrapϕ+ β|ϕ|2 = µϕ. (3)

In this work, we compute stationary solutions to Eq. (3) with homogeneous Dirichlet
boundary conditions (i.e. ϕ = 0 on ∂D) for fixed µ. Branches of such solutions are
obtained by performing numerical continuation [51] over µ, which corresponds here to a
bifurcation parameter. At each step in the continuation process, we monitor the energy

E(ϕ) =
∫

D

(
1
2 |∇ϕ(x)|2 + Ctrap(x)|ϕ(x)|2 + β

2 |ϕ(x)|4
)
dx, (4)

and the L2-norm of the solution ϕ (representing the total number of atoms)

N(ϕ) =
∫

D
ϕϕdx =

∫
D

|ϕ|2dx. (5)

The Bogoliubov-de Gennes (BdG) problem we aim to solve is obtained by using in Eq.
(1) the ansatz

ψ(x, t) =
[
ϕ(x) + δ

(
A(x)e−iωt +B(x)eiωt

)]
e−iµt, δ ≪ 1, (6)

where ϕ(x) is a stationary state, A and B are complex-valued functions, and ω is a
complex number. We obtain the linear eigenvalue problem called the BdG equation:(H − µ+ 2β|ϕ|2 βϕ2

−βϕ2 −(H − µ+ 2β|ϕ|2)

) (
A
B

)
= ω

(
A
B

)
, (7)

where
H ≡ −1

2∇2 + Ctrap. (8)

The present toolbox computes the eigenvalue-eigenvector pair (ω,A,B) for a given
stationary solution ϕ. Note that we consider the most general case, with ϕ ∈ C and ω ∈ C.
The particular case of real solutions (ϕ ∈ R) and real eigenvalues (ω ∈ R), corresponding
to elementary excitations, was recently studied in [63]. We direct the reader to [56] for a
detailed discussion on the properties of the general BdG problem.
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2.2. The two-component case: Gross-Pitaevskii and Bogoliubov-de Gennes equations
A mixture of two BECs (e.g. different hyperfine states of the same species) is described

by a coupled system of two GP equations [3, 4, 19]:
i∂ψ1

∂t
=

(
−1

2∇2 + Ctrap + β11|ψ1|2 + β12|ψ2|2
)
ψ1,

i∂ψ2

∂t
=

(
−1

2∇2 + Ctrap + β21|ψ1|2 + β22|ψ2|2
)
ψ2.

(9)

Coefficients β11 and β22 in (9) represent the interaction strengths between atoms of
same species, whereas the β12 and β21 represent the ones between different species. For
mathematical models involving more than two GP equations (e.g. for spinor BEC),
we refer to [64]. Similarly to the one-component case, using in Eqs. (9) the Ansätze
ψj(x, t) = ϕj(x)e−iµjt, j = 1, 2, with chemical potentials µ1 and µ2, we obtain the
following coupled system of stationary GP equations:

µ1ϕ1 =
(

−1
2∇2 + Ctrap + β11|ϕ1|2 + β12|ϕ2|2

)
ϕ1,

µ2ϕ2 =
(

−1
2∇2 + Ctrap + β21|ϕ1|2 + β22|ϕ2|2

)
ϕ2,

(10)

The system (10), with homogeneous Dirichlet boundary conditions (ϕj = 0 on ∂D for
j = 1, 2), is solved for fixed values of µ1 and µ2. The characterization of a stationary
solution is based on the total energy

E(ϕ1,ϕ2) =
∫

D

2∑
i=1

1
2 |∇ϕi|2 + Ctrap |ϕi|2 + 1

2

2∑
j=1

βij |ϕi|2|ϕj |2
 dx, (11)

as well as the total number of atoms N(ϕ1,ϕ2) = N(ϕ1) +N(ϕ2), where N(·) is given by
Eq. (5). To study the spectral stability of stationary solutions we consider the Ansätze

ψ1(x, t) =
[
ϕ1(x) + δ

(
A(x)e−iωt +B(x)eiωt

)]
e−iµ1t, (12a)

ψ2(x, t) =
[
ϕ2(x) + δ

(
C(x)e−iωt +D(x)eiωt

)]
e−iµ2t, (12b)

with A,B,C,D,ω ∈ C, and obtain the BdG equations for the two-component case:

M


A
B
C
D

 = ω


A
B
C
D

 , M =


M11 β11ϕ

2
1 β12ϕ1ϕ2 β12ϕ1ϕ2

−β11ϕ1
2

M22 −β12ϕ1ϕ2 −β12ϕ1ϕ2
β21ϕ1ϕ2 β21ϕ1ϕ2 M33 β22ϕ

2
2

−β21ϕ1ϕ2 −β21ϕ1ϕ2 −β22ϕ2
2

M44

 , (13)

with matrix elements 
M11 = H − µ1 + 2β11|ϕ1|2 + β12|ϕ2|2,
M22 = −M11,
M33 = H − µ2 + β21|ϕ1|2 + 2β22|ϕ2|2,
M44 = −M33,

(14)

and H given by Eq. (8).
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3. The computation of stationary solutions to the GP equations

3.1. Newton’s method for a single-component BEC
For the computation of stationary solutions to Eq. (3), we use Newton’s method

[52]. We first split the complex-valued wave function ϕ into real and imaginary parts via
ϕ = ϕr + iϕi and obtain from (3) the following coupled system of nonlinear equations

−1
2∇2ϕr + Ctrapϕr + βf(ϕr,ϕi)ϕr − µϕr = 0,

−1
2∇2ϕi + Ctrapϕi + βf(ϕr,ϕi)ϕi − µϕi = 0.

(15)

We introduced in (15) the (scalar) function f(ϕr,ϕi) = |ϕ|2 = ϕ2
r + ϕ2

i that corresponds
to the cubic nonlinearity in the GP equation. Note that the expression of f has been
programmed in the toolbox in a general way; other types of expressions (corresponding
to the GP equation with different nonlinearity than cubic) can be used and easily
implemented in the toolbox.

The homogeneous Dirichlet conditions for the complex-valued wave function ϕ translate
into imposing ϕr = ϕi = 0 on ∂D. After setting the classical Sobolev spaces [65]
V = H1

0 (D) for ϕr and ϕi, we define the weak formulation (mandatory for the finite-
element implementation) of Eq. (15) as: find (ϕr,ϕi) ∈ V × V = V 2, such that for all
test functions (vr, vi) ∈ V 2

Fr(ϕr,ϕi, vr) =
∫

D
(Ctrap − µ)ϕrvr +

∫
D

1
2∇ϕr · ∇vr +

∫
D
βf(ϕr,ϕi)ϕrvr = 0,

Fi(ϕr,ϕi, vi) =
∫

D
(Ctrap − µ)ϕivi +

∫
D

1
2∇ϕi · ∇vi +

∫
D
βf(ϕr,ϕi)ϕivi = 0.

(16)

The above coupled system of nonlinear equations is discretized using finite elements
in FreeFEM (see Sec. 3.3), and solved by means of Newton’s method which requires
a sufficiently good initial guess. For a given value of µ and an initial guess (ϕ0

r,ϕ0
i ),

Newton’s method computes corrections to the solution components (ϕr,ϕi) iteratively via

q = ϕk
r − ϕk+1

r , s = ϕk
i − ϕk+1

i , k ≥ 0, (17)

where q and s are solutions of the linearized equations
(
∂Fr

∂ϕr

)
ϕr=ϕk

r ,ϕi=ϕk
i

(
∂Fr

∂ϕi

)
ϕr=ϕk

r ,ϕi=ϕk
i(

∂Fi

∂ϕr

)
ϕr=ϕk

r ,ϕi=ϕk
i

(
∂Fi

∂ϕi

)
ϕr=ϕk

r ,ϕi=ϕk
i


(
q
s

)
=

(
Fr(ϕk

r ,ϕk
i , vr)

Fi(ϕk
r ,ϕk

i , vi)

)
, (18)
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with the corresponding weak formulation

∫
D

(Ctrap − µ)qvr +
∫

D

1
2∇q · ∇vr +

∫
D

β

(
∂f

∂ϕr
(ϕk

r , ϕk
i ) ϕk

r q + ∂f

∂ϕi
(ϕk

r , ϕk
i ) ϕk

r s + f(ϕk
r , ϕk

i )q
)

vr

=
∫

D
(Ctrap − µ)ϕk

r vr +
∫

D

1
2∇ϕk

r · ∇vr +
∫

D
βf(ϕk

r , ϕk
i )ϕk

r vr,∫
D

(Ctrap − µ)svi +
∫

D

1
2∇s · ∇vi +

∫
D

β

(
∂f

∂ϕr
(ϕk

r , ϕk
i ) ϕk

i q + ∂f

∂ϕi
(ϕk

r , ϕk
i ) ϕk

i s + f(ϕk
r , ϕk

i )s
)

vi

=
∫

D
(Ctrap − µ)ϕk

i vi +
∫

D

1
2∇ϕk

i · ∇vi +
∫

D
βf(ϕk

r , ϕk
i )ϕk

i vi.

(19)

Note that the implementation of Eqs. (19) in FreeFEM takes a form very similar to
the mathematical formulation of the problem due to its versatile metalanguage used
therein. This is an advantage for the user who can thus build bug-free numerical codes
when cumbersome mathematical expressions are coded.

3.2. Newton method for the two-component BEC
The two-component GP system (10) is solved similarly by means of Newton’s method,

after splitting ϕ1 and ϕ2 into real and imaginary parts via ϕ1 = ϕ1r + iϕ1i and ϕ2 =
ϕ2r + iϕ2i. Equations (10) are thus converted into a system consisting of four real-valued
(nonlinear) equations:

−1
2∇2ϕ1r + (Ctrap − µ1)ϕ1r + β11f(ϕ1r,ϕ1i)ϕ1r + β12f(ϕ2r,ϕ2i)ϕ1r = 0,

−1
2∇2ϕ1i + (Ctrap − µ1)ϕ1i + β11f(ϕ1r,ϕ1i)ϕ1i + β12f(ϕ2r,ϕ2i)ϕ1i = 0,

−1
2∇2ϕ2r + (Ctrap − µ2)ϕ2r + β21f(ϕ1r,ϕ1i)ϕ2r + β22f(ϕ2r,ϕ2i)ϕ2r = 0,

−1
2∇2ϕ2i + (Ctrap − µ2)ϕ2i + β21f(ϕ1r,ϕ1i)ϕ2i + β22f(ϕ2r,ϕ2i)ϕ2i = 0.

(20)

Again, homogeneous Dirichlet boundary conditions on ϕ1 and ϕ2 are imposed: ϕ1r =
ϕ1i = ϕ2r = ϕ2i = 0 on ∂D. The weak formulation of Eqs. (20) can be written as follows:
find (ϕ1r,ϕ1i,ϕ2r,ϕ2i) ∈ V 4, such that for all test functions (v1r, v1i, v2r, v2i) ∈ V 4

F1r =
∫

D
(Ctrap − µ1)ϕ1rv1r +

∫
D

1
2∇ϕ1r · ∇v1r +

∫
D

(β11f(ϕ1r, ϕ1i) + β12f(ϕ2r, ϕ2i))ϕ1rv1r = 0,

F1i =
∫

D
(Ctrap − µ1)ϕ1iv1i +

∫
D

1
2∇ϕ1i · ∇v1i +

∫
D

(β11f(ϕ1r, ϕ1i) + β12f(ϕ2r, ϕ2i))ϕ1iv1i = 0,

F2r =
∫

D
(Ctrap − µ2)ϕ2rv2r +

∫
D

1
2∇ϕ2r · ∇v2r +

∫
D

(β21f(ϕ1r, ϕ1i) + β22f(ϕ2r, ϕ2i))ϕ2rv2r = 0,

F2i =
∫

D
(Ctrap − µ2)ϕ2iv2i +

∫
D

1
2∇ϕ2i · ∇v2i +

∫
D

(β21f(ϕ1r, ϕ1i) + β22f(ϕ2r, ϕ2i))ϕ2iv2i = 0.

(21)

Newton’s method computes, for fixed chemical potentials µ1 and µ2 and given initial
guess

(
ϕ0

1r,ϕ0
1i,ϕ0

2r,ϕ0
2i

)
, the corrections

q1 = ϕk
1r − ϕk+1

1r , s1 = ϕk
1i − ϕk+1

1i , q2 = ϕk
2r − ϕk+1

2r , s2 = ϕk
2i − ϕk+1

2i , (22)
8



which are solutions to the following system of linear equations:∫
D

(Ctrap − µ1)q1v1r +
∫

D

1
2∇q1 · ∇v1r +

∫
D

(β11f(ϕk
1r, ϕk

1i) + β12f(ϕk
2r, ϕk

2i))q1v1r

+
∫

D
β11

(
∂f

∂ϕr
(ϕk

1r, ϕk
1i)ϕk

1rq1 + ∂f

∂ϕi
(ϕk

1r, ϕk
1i)ϕk

1rs1

)
v1r

+
∫

D
β12

(
∂f

∂ϕr
(ϕk

2r, ϕk
2i)ϕk

1rq2 + ∂f

∂ϕi
(ϕk

2r, ϕk
2i)ϕk

1rs2

)
v1r

=
∫

D
(Ctrap − µ1)ϕk

1rv1r +
∫

D

1
2∇ϕk

1r · ∇v1r +
∫

D
(β11f(ϕk

1r, ϕk
1i) + β12f(ϕk

2r, ϕk
2i))ϕk

1rv1r,

(23)∫
D

(Ctrap − µ1)s1v1i +
∫

D

1
2∇s1 · ∇v1i +

∫
D

(β11f(ϕk
1r, ϕk

1i) + β12f(ϕk
2r, ϕk

2i))s1v1i

+
∫

D
β11

(
∂f

∂ϕr
(ϕk

1r, ϕk
1i)ϕk

1iq1 + ∂f

∂ϕi
(ϕk

1r, ϕk
1i)ϕk

1is1

)
v1i

+
∫

D
β12

(
∂f

∂ϕr
(ϕk

2r, ϕk
2i)ϕk

1iq2 + ∂f

∂ϕi
(ϕk

2r, ϕk
2i)ϕk

1is2

)
v1i

=
∫

D
(Ctrap − µ1)ϕk

1iv1i +
∫

D

1
2∇ϕk

1i · ∇v1i +
∫

D
(β11f(ϕk

1r, ϕk
1i) + β12f(ϕk

2r, ϕk
2i))ϕk

1iv1i,

(24)∫
D

(Ctrap − µ2)q2v2r +
∫

D

1
2∇q2 · ∇v2r +

∫
D

(β22f(ϕk
2r, ϕk

2i) + β21f(ϕk
1r, ϕk

1i))q2v2r

+
∫

D
β21

(
∂f

∂ϕr
(ϕk

1r, ϕk
1i)ϕk

2rq1 + ∂f

∂ϕi
(ϕk

1r, ϕk
1i)ϕk

2rs1

)
v2r

+
∫

D
β22

(
∂f

∂ϕr
(ϕk

2r, ϕk
2i)ϕk

2rq2 + ∂f

∂ϕi
(ϕk

2r, ϕk
2i)ϕk

2rs2

)
v2r

=
∫

D
(Ctrap − µ2)ϕk

2rv2r +
∫

D

1
2∇ϕk

2r · ∇v2r +
∫

D
(β21f(ϕk

1r, ϕk
1i) + β22f(ϕk

2r, ϕk
2i))ϕk

2rv2r,

(25)∫
D

(Ctrap − µ2)s2v2i +
∫

D

1
2∇s2 · ∇v2i +

∫
D

(β22f(ϕk
2r, ϕk

2i) + β21f(ϕk
1r, ϕk

1i))s2v2i

+
∫

D
β21

(
∂f

∂ϕr
(ϕk

1r, ϕk
1i)ϕk

2iq1 + ∂f

∂ϕi
(ϕk

1r, ϕk
1i)ϕk

2is1

)
v2i

+
∫

D
β22

(
∂f

∂ϕr
(ϕk

2r, ϕk
2i)ϕk

2iq2 + ∂f

∂ϕi
(ϕk

2r, ϕk
2i)ϕk

2is2

)
v2i

=
∫

D
(Ctrap − µ2)ϕk

2iv2i +
∫

D

1
2∇ϕk

2i · ∇v2i +
∫

D
(β21f(ϕk

1r, ϕk
1i) + β22f(ϕk

2r, ϕk
2i))ϕk

2iv2i.

(26)
Again, the implementation of Eqs. (23)-(26) with FreeFEM is very similar to the mathe-
matical formulation.

9



3.3. Finite-element implementation with FreeFEM
We now present the finite-element implementation in the free software FreeFEM [57]

of the weak formulations for the one- and two-component GP equations solved with
Newton’s method. Note that the main principles of programming and numerical settings
presented herein are shared with the implementation of the BdG problem, see Sec. 4.

One of the main advantages while programming in FreeFEM is that cumbersome formu-
las are coded in a compact form, and close to their mathematical formulations. For exam-
ple, the weak form of the system of linear equations (19) is conveniently implemented as a
list of expressions embodied in a Macro (see BdG 1comp ddm/A macro/Macro problem.edp)
in which integral terms are easy to identify:
NewMacro problemGP

macro f(ur ,ui) (urˆ2 + ui ˆ2) //
macro dfdur(ur ,ui) (2.* ur)//
macro dfdui(ur ,ui) (2.* ui)//

varf vGP ([q,s],[vr ,vi]) =
intN(Th , qforder =ord)(( Ctrap - mu)*q*vr + .5* grad(q) ’*grad(vr)
+ (Ctrap - mu)*s*vi + .5* grad(s) ’*grad(vi)
+ beta * (f(phir ,phii)*q*vr + f(phir ,phii)*s*vi)
+ beta * phir*vr*( dfdur(phir ,phii)*q + dfdui(phir ,phii)*s)
+ beta * phii*vi*( dfdur(phir ,phii)*q + dfdui(phir ,phii)*s))
+ intN(Th , qforder =ord)(( Ctrap - mu)*phir*vr + .5* grad(phir) ’*

grad(vr)
+ (Ctrap - mu)*phii*vi + .5* grad(phii) ’*grad(vi)
+ beta * f(phir ,phii) * (phir*vr + phii*vi))
BCGP;

EndMacro

Another advantage of this formulation in FreeFEM is that it can be invariantly used in any
(spatial) dimension (d = 2 or d = 3), and for any available type of finite elements. This is
accomplished by simply declaring respective values in the files defining the computational
case. Indicatively, for the computation of the 2D ground state using a P2 finite-element
space, the user can declare (see for example BdG 1comp ddm/INIT/2D ground state.inc):
macro dimension 2//
macro FEchoice P2//

These choices are transmitted in the main programs, see, e.g. FFEM GP 1c 2D 3D ddm.edp:
func Pk = [FEchoice , FEchoice ];
...
meshN Th; // Local mesh
meshN ThBackup ; // Global mesh
fespace Wh(Th , FEchoice );
fespace Whk(Th ,Pk);
fespace WhBackup (ThBackup , FEchoice );
fespace WhkBackup (ThBackup ,Pk);
...
Wh <complex > phi , phitemp ; // Wavefunction
Whk [q,s], [phir ,phii ];
WhBackup <complex > phiBackup , phitempBackup ; // Wavefunction

10



Similarly, for the two-component case, the macro formulation for the linear system
(23)-(24) can be found in the file BdG 2comp ddm/A macro/Macro problem.edp, and reads

NewMacro problemGP
macro f(ur ,ui) (urˆ2 + ui ˆ2) //
macro dfdur(ur ,ui) (2.* ur)//
macro dfdui(ur ,ui) (2.* ui)//

varf vGP ([q1 ,s1 ,q2 ,s2],[v1r ,v1i ,v2r ,v2i ])=
intN(Th , qforder =ord)(
1./2.* grad(q1) ’*grad(v1r) + (Ctrap - mu1)*q1*v1r + ( beta11 *f(

phi1r ,phi1i) + beta12 *f(phi2r ,phi2i))*q1*v1r
+ beta11 *( dfdur(phi1r ,phi1i)*phi1r*q1 + dfdui(phi1r ,phi1i)*

phi1r*s1)*v1r
+ beta12 *( dfdur(phi2r ,phi2i)*phi1r*q2 + dfdui(phi2r ,phi2i)*

phi1r*s2)*v1r
+1./2.* grad(s1) ’*grad(v1i) + (Ctrap - mu1)*s1*v1i + ( beta11 *f(

phi1r ,phi1i) + beta12 *f(phi2r ,phi2i))*s1*v1i
+ beta11 *( dfdur(phi1r ,phi1i)*phi1i*q1 + dfdui(phi1r ,phi1i)*

phi1i*s1)*v1i
+ beta12 *( dfdur(phi2r ,phi2i)*phi1i*q2 + dfdui(phi2r ,phi2i)*

phi1i*s2)*v1i
+1./2.* grad(q2) ’*grad(v2r) + (Ctrap - mu2)*q2*v2r + ( beta22 *f(

phi2r ,phi2i) + beta21 *f(phi1r ,phi1i))*q2*v2r
+ beta22 *( dfdur(phi2r ,phi2i)*phi2r*q2 + dfdui(phi2r ,phi2i)*

phi2r*s2)*v2r
+ beta21 *( dfdur(phi1r ,phi1i)*phi2r*q1 + dfdui(phi1r ,phi1i)*

phi2r*s1)*v2r
+1./2.* grad(s2) ’*grad(v2i) + (Ctrap - mu2)*s2*v2i + ( beta22 *f(

phi2r ,phi2i) + beta21 *f(phi1r ,phi1i))*s2*v2i
+ beta22 *( dfdur(phi2r ,phi2i)*phi2i*q2 + dfdui(phi2r ,phi2i)*

phi2i*s2)*v2i
+ beta21 *( dfdur(phi1r ,phi1i)*phi2i*q1 + dfdui(phi1r ,phi1i)*

phi2i*s1)*v2i
)
+ intN(Th , qforder =ord)(
1./2.* grad( phi1r) ’*grad(v1r) + (Ctrap - mu1)*phi1r*v1r + (

beta11 *f(phi1r ,phi1i) + beta12 *f(phi2r ,phi2i))*phi1r*v1r
+ 1./2.* grad(phi1i) ’*grad(v1i) + (Ctrap - mu1)*phi1i*v1i + (

beta11 *f(phi1r ,phi1i) + beta12 *f(phi2r ,phi2i))*phi1i*v1i
+ 1./2.* grad(phi2r) ’*grad(v2r) + (Ctrap - mu2)*phi2r*v2r + (

beta22 *f(phi2r ,phi2i) + beta21 *f(phi1r ,phi1i))*phi2r*v2r
+ 1./2.* grad(phi2i) ’*grad(v2i) + (Ctrap - mu2)*phi2i*v2i + (

beta22 *f(phi2r ,phi2i) + beta21 *f(phi1r ,phi1i))*phi2i*v2i
)
BCGP;

EndMacro
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We highlight here that the user has the flexibility to consider different trapping
potentials in the two-component case if necessary. This can be accomplished by modifying
the .inc files located in the INIT subdirectories, and consider, for example, Ctrap1 and
Ctrap2 for the first and second components, respectively.

The programs that we deliver with this toolbox consider P2 (piece-wise quadratic)
finite elements. The mesh in FreeFEM (generically identified as Th) is made of triangles in
2D and tetrahedra in 3D. A fast mesh generator with a simple syntax is built in FreeFEM .
A striking feature of FreeFEM is the ability to perform adaptive mesh refinement: the
grid is refined in regions of large gradients and coarsened in low-gradient ones. This is of
paramount importance, especially for high-dimensional problems where a sufficiently good
resolution of the solution is required. Using a very fine mesh (with no mesh adaptation)
for the entire domain would lead to a large memory consumption and an excessively long
computational time. With the implementation of adaptive mesh refinement in the present
toolbox in FreeFEM , we maintain reasonable problem sizes, and thus computational time,
while keeping a high degree of accuracy.

For 2D configurations, the mesh is adapted by using the built-in adaptmesh command
in FreeFEM . In short (further details can be found in our recent contribution [56]), the
underlying algorithm modifies the inner product in the mesh generator to evaluate distance
and volume [66–68]. For 3D configurations, adaptive mesh refinement in FreeFEM is
performed through the use of the libraries mshmet and mmg [69] where similar algorithms
are employed. In the present implementation for computing stationary 2D and 3D
configurations to the GP equations, we use adaptive mesh refinement based on the density
of the solution as well as its real and imaginary parts. This approach has been considered
in [70], and has been proven quite effective in computing complicated vortex solutions.

The underlying nonlinear equations are solved by means of Newton’s method which is
fed by an initial guess (with fixed chemical potential(s)), see Secs. 5 and 6 for example
cases. Newton’s iterations are stopped when one of the following criteria is satisfied:∥∥∥∥(

q
s

)∥∥∥∥
∞
< ϵq,

∥∥∥∥(
Fr

Fi

)∥∥∥∥
2
< ϵF , (27)

The former controls the convergence (in the infinity norm) in Newton’s method whereas
the latter checks the accuracy of the solution (the residual in the L2-norm). In practice,
we use ϵq = 10−8 and ϵF = 10−16 but we found that both criteria are satisfied simul-
taneously in all the cases we have considered in this paper. Moreover, we note that
convergence in Newton’s method depends crucially on the choice of the linear solver we
employ. Specifically, in 2D, we use an exact LU decomposition, as computed (within the
SLEPc library) by the MUMPS solver with options:
"-pc type lu -ksp type preonly"
The computational cost in 2D is thus manageable. For 3D cases, we switch to a more
economical preconditioner, and in particular, the algebraic multigrid method which is
available in HYPRE with options:
"-pc type hypre -ksp type gmres -ksp atol 1e-12 -ksp rtol 1e-6 -ksp gmres restart
50 -ksp max it 500 -ksp pc side right -sub pc type lu
-sub pc factor mat solver type mumps".

The toolbox can trace branches of stationary configurations to the GP equations
by performing numerical continuation [51] over the parameters of the model. For the
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one-component case, we consider the chemical potential µ as our principal continuation
parameter. In particular, we start from a value of the chemical potential µ0 for which the
initial guess is sufficiently close to the stationary state of interest. Upon convergence in
Newton’s method (discussed above), we use the resulting converged state as an initial
guess for the next step in the continuation process with chemical potential µ0 + δµ. We
highlight the fact that we include a simple adaptive strategy for the selection of the
increment δµ in the toolbox. Initially, the δµ is fixed to 10−3 when µ0 is close to the
respective state’s linear limit. It then gets doubled, i.e. δµ = 2δµ, at every 10 steps in
the continuation process until it reaches δµmax = 0.015 whereupon it remains fixed, and
the continuation stops when the final value µf specified by the user is reached.

Finally, for the two-component setting, we follow different continuation strategies
that involve relevant principal continuation parameters in order to match the toolbox’s
results with ones that exist in the literature. For example, the 2D ring-antidark branch is
traced by performing continuation over µ1 and µ2 first, and then over the inter-component
interactions β12 and β21 (with fixed µ1 and µ2). The 2D vortex-antidark branch is traced
by fixing µ1 and µ2 first, and continuation over the inter-component interactions β12
and β21 is performed afterwards. Ultimately, various continuation strategies can be
conveniently designed and implemented in the toolbox by the user involving different
principal continuation parameters.

4. Solving the BdG equations

We solve the BdG problems for the one- and two-component cases by using the SLEPc
library [62] which is now interfaced with FreeFEM . First, we write the weak form of the
BdG problems that will be supplied to the solver. Indicatively, and for the one-component
case, the weak formulation of the BdG problem associated with Eq. (7) reads:

∫
D

1
2∇A · ∇v1 +

∫
D

(Ctrap − µ)Av1 +
∫

D
2β|ϕ|2Av1 +

∫
D
βϕ2Bv1 = ω

∫
D
Av1,

−
∫

D

1
2∇B · ∇v2 −

∫
D

(Ctrap + µ)Bv2 −
∫

D
2β|ϕ|2Bv2 −

∫
D
βϕ

2
Av2 = ω

∫
D
Bv2.

(28)

The bilinear terms in the left hand side of this equation form the finite-element matrix
M that is fed to SLEPc library. The implementation of the BdG problem of Eq. (28) can
be straightforwardly made now in FreeFEM :

NewMacro problemBdG
varf vBdGMat ([A,B],[v1 ,v2]) =
intN(Th , qforder =ord)(.5* grad(v1) ’*grad(A) +( Ctrap -mu)*A*v1 ’
+ 2.* beta*abs(phi)ˆ2*A*v1 ’ + beta*phi ˆ2*B*v1 ’
- .5* grad(v2) ’*grad(B) - (Ctrap -mu)*B*v2 ’
- 2.* beta*abs(phi)ˆ2*B*v2 ’ - beta *(phi ’) ˆ2*A*v2 ’)
BCBdG;

varf vBdGVec ([A,B],[v1 ,v2]) = intN(Th , qforder =ord)(A*v1 ’ + B*v2
’);

EndMacro
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It is easy to see the correspondence between the weak formulation of Eq. (28) and its imple-
mentation in the above macro (see the file BdG 1comp ddm/A macro/Macro problem.edp).
For the computation of the BdG spectrum, we apply a small shift to slightly regularize the
eigenproblem, e.g. σ = 10−4 or σ = 10−2 that is implemented in the EPSSolve function
of SLEPc by using the parameters:
"-st type sinvert -eps target sigma".

Upon computing the eigenvalues and eigenvectors of the BdG problem in SLEPc, we
further check their accuracy by displaying the residual of Eq. (7):∥∥∥∥M (

A
B

)
− ω

(
A
B

)∥∥∥∥
∞

(29)

by using the SLEPc parameters: "-eps error backward ::ascii info detail".
Finally, we present the weak formulation in the two-component case emanating from

Eqs. (13)-(14):

∫
D

1
2∇A · ∇v1 +

∫
D

(Ctrap − µ1)Av1 +
∫

D

(
2β11|ϕ1|2 + β12|ϕ2|2

)
Av1

+
∫

D
β11ϕ

2
1Bv1 +

∫
D
β12ϕ1ϕ2Cv1 +

∫
D
β12ϕ1ϕ2Dv1 = ω

∫
D
Av1,

−
∫

D

1
2∇B · ∇v2 −

∫
D

(Ctrap − µ)Bv2 −
∫

D

(
2β11|ϕ1|2 + β12|ϕ2|2

)
Bv2

−
∫

D
β11ϕ1

2
Av2 −

∫
D
β12ϕ1ϕ2Cv2 −

∫
D
β12ϕ1ϕ2Dv2 = ω

∫
D
Bv2,∫

D

1
2∇C · ∇v3 +

∫
D

(Ctrap − µ)Cv3 +
∫

D

(
2β22|ϕ2|2 + β21|ϕ1|2

)
Cv3

+
∫

D
β21ϕ1ϕ2Av3 +

∫
D
β21ϕ1ϕ2Bv3 +

∫
D
β22ϕ

2
2Dv3 = ω

∫
D
Cv3,

−
∫

D

1
2∇D · ∇v4 −

∫
D

(Ctrap − µ)Dv4 −
∫

D

(
2β22|ϕ2|2 + β21|ϕ1|2

)
Dv4

−
∫

D
β21ϕ1ϕ2Av4 −

∫
D
β21ϕ1ϕ2Bv4 −

∫
D
β22ϕ2

2
Cv4 = ω

∫
D
Dv4.

(30)
Again, the implementation of the BdG problem of Eq. (30) is easy in FreeFEM (see

BdG 2comp ddm/A macro/Macro problem.edp):

NewMacro problemBdG
varf vBdGMat ([A,B,C,D],[v1 ,v2 ,v3 ,v4]) =

intN(Th , qforder =ord)(.5* grad(v1) ’*grad(A) + (Ctrap - mu1)*A*
v1 ’ + (2.* beta11 *un2(phi1 ,phi1) + beta12 *un2(phi2 ,phi2))*A
*v1 ’

+ beta11 *phi1*phi1*B*v1 ’ + beta12 *phi1*phi2 ’*C*v1 ’ +
beta12 *phi1*phi2*D*v1 ’

-.5* grad(v2) ’*grad(B) - (Ctrap - mu1)*B*v2 ’ - (2.* beta11 *
un2(phi1 ,phi1) + beta12 *un2(phi2 ,phi2))*B*v2 ’

- beta11 *phi1 ’*phi1 ’*A*v2 ’ - beta12 *phi1 ’*phi2 ’*C*v2 ’ -
beta12 *phi1 ’* phi2*D*v2 ’
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+.5* grad(v3) ’*grad(C) + (Ctrap - mu2)*C*v3 ’ + (2.* beta22 *
un2(phi2 ,phi2) + beta21 *un2(phi1 ,phi1))*C*v3 ’

+ beta22 *phi2*phi2*D*v3 ’ + beta21 *phi1 ’* phi2*A*v3 ’ +
beta21 *phi1*phi2*B*v3 ’

-.5* grad(v4) ’*grad(D) - (Ctrap - mu2)*D*v4 ’ - (2.* beta22 *
un2(phi2 ,phi2) + beta21 *un2(phi1 ,phi1))*D*v4 ’

- beta22 *phi2 ’*phi2 ’*C*v4 ’ - beta21 *phi1 ’*phi2 ’*A*v4 ’ -
beta21 *phi1*phi2 ’*B*v4 ’

)
BCBdG;

varf vBdGVec ([A,B,C,D],[v1 ,v2 ,v3 ,v4]) = intN(Th , qforder =ord)(A*
v1 ’ + B*v2 ’ + C*v3 ’ + D*v4 ’);

EndMacro

5. Validation test cases for the one-component BEC

The first mandatory validation test consists in proving that the new parallel BdG
toolbox using PETSc provides the correct results for the cases that were affordable with
the previously published sequential BdG toolbox using ARPACK [56]. These cases
correspond to fundamental one-component BEC configurations well documented in the
physical literature. We set β = 1 (repulsive interactions) and Ctrap = 1

2ω
2
⊥r

2 (isotropic
trap, with r2 = x2 + y2 + z2) and compute the following configurations:

• The 2D ground state (parameter file BdG 1comp ddm/INIT/2D ground state.inc).
The distribution of the BdG modes for oscillations of the ground state in the
Thomas-Fermi (TF) limit for repulsive BECs was found in [71], and is given by

ωTF
m,k = ω⊥

√
m+ 2k2 + 2k(1 +m), (31)

where m, k ≥ 0 are integers. The toolbox computes the first 20 BdG modes for µ = 6
and ω⊥ = 0.2. An important test for this case is to accurately capture the zero mode:
using 4 MPI processors, this eigenvalue is computed as ωTF

0,0 = 6 · 10−7 + i 8 · 10−14.
This gives an indication of the precision of calculations with the present toolbox.
This case also serves to check that mesh adaptation provides the same results as
computations with a refined fixed mesh.

• The 2D dark soliton (parameter file BdG 1comp ddm/INIT/2D dark soliton.inc).
This case is also known as the dark-soliton stripe (see [72] and references therein).
At the linear limit, this state is constructed as

ϕDS =
√
ω⊥

2π H0( √
ω⊥x)H1( √

ω⊥y)e− 1
2 ω⊥(x2+y2), (32)

where Hn are Hermite polynomials of degree n. Similarly as before, we set ω⊥ = 0.2,
and perform a numerical continuation over µ all the way up to µ = 3 in order to
trace the entire branch. This case is computationally interesting, since it exists a
preferred direction along which the configuration will tend to align itself. When
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we adapt the mesh, this direction changes, and the wave function will then rotate.
We overcome this issue by allowing the toolbox to perform mesh adaptation at
each continuation step. Note that mesh adaptivity is performed at every step in
Newton’s method, especially when the norm of the correction is greater than 0.1.
The results are identical to the results of [73]: we observe the emergence of a cascade
of pitchfork (i.e. symmetry-breaking) bifurcations.

• The 3D ground state (parameter file BdG 1comp ddm/INIT/3D ground state.inc).
This is the only 3D case affordable with sequential computations. We compute the
BdG spectrum for ω⊥ = 1 without MPI (using the sequential toolbox published in
[56]) and with 4 MPI processors (and the µ-adaptivity continuation strategy dis-
cussed previously). Both numerical results are in full agreement with the numerical
results reported in [22].

These three cases were also considered in our previous contribution [56], where detailed
illustrations of the corresponding GP stationary states and associated BdG spectra are
provided. The case of with a central vortex state (see [56]) is also provided (parameter
file BdG 1comp ddm/INIT/2D central vortex.inc)). The user can obtain the graphs
representing stationary states (contours/iso-surfaces of atomic density) and BdG spectra
by running the programs of the present toolbox.

To illustrate the capability of the new toolbox to deal with complex 3D cases, we
briefly present cases that have been recently considered in the physical literature:

• 3D dark soliton (parameter file BdG 1comp ddm/INIT/3D dark soliton.inc). The
existence of this state in 3D and its BdG analysis was considered in [74], where
the azimuthal symmetry of the state was taken into account to reduce the 3D BdG
problem to a 2D one. We perform a full 3D BdG analysis by using an isotropic
potential with ω⊥ = 1. The 3D dark soliton (or planar dark soliton) can be
constructed in the linear limit by the Cartesian eigenstate |0, 0, 1⟩ (bearing a zero
cut in the z direction), and can be expressed in terms of Hermite polynomials [74]
(see also [54]). This state emanates from the linear limit at µ = 5/2, and it is
degenerate; the eigenstates |1, 0, 0⟩ and |0, 1, 0⟩ produce the same solution although
they now have zero cuts along the x and y directions, respectively. The script uses
this eigenstate as a seed to Newton’s method to perform a continuation over µ.
Our 3D results match perfectly the ones obtained in [74] with the axisymmetry
hypothesis.

• 3D vortex lines and beyond. We consider two extra cases with complex 3D structure
that cannot be computed with the sequential toolbox: a single-charged vortex-line
state [22] (parameter file BdG 1comp ddm/INIT/3D vortex line single.inc), and
a vortex-ring configuration bearing two (oppositely charged) vortex lines handles [54]
(parameter file BdG 1comp ddm/INIT/3D vortex ring 2vortex lines.inc). The
former state bifurcates from the linear limit at µ = 2.5 (i.e. 1st-excited state),
and can be classified in terms of cylindrical coordinates as |0, 1, 0⟩cyl = r2L1

0(x2 +
y2)eiθe−(x2+y2+z2)/2 [54] (where L1

0 stands for the associated Laguerre polynomial).
Similarly, the vortex-ring with two handles bifurcates at µ = 3.5 from the linear
limit, and is constructed by the combination of Hermite polynomials (in Cartesian
coordinates) |2, 0, 0⟩+|0, 2, 0⟩+i|1, 0, 1⟩. Our toolbox was capable of tracing branches
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of solutions for both cases and the respective results are shown in Figs. 1 and 2,
respectively. In particular, panels a) in these figures depict the BdG spectra of
the pertinent states that match with the findings in [22] and [54]. Panels b) show
atomic density isosurfaces |ϕ|2 of the solutions for µ = 4.5 and µ = 6, respectively.
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Figure 1: 3D one-component BEC with single-charged vortex-line configuration. a) The BdG spectrum
and b) density |ϕ|2 for µ = 4.5. The computational domain is the cube [−5.4, 5.4]3.
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Figure 2: 3D one-component BEC with vortex-ring with two (oppositely charged) vortex-line handles
configuration. a) The BdG spectrum and b) density |ϕ|2 for µ = 6. The computational domain is the
cube [−6.23, 6.23]3.

To conclude this first part of validation tests and warn the potential user about the
necessary computational resources, we present in Table 1 a summary of the considered
cases, together with typical computational times and mesh sizes (i.e. the number of
elements). Table 2 contains the number of unknowns (ndof), the number of tetrahedra
(nt), and the number of non-zero elements (nnz) of the matrix used for the computation of
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the BdG spectra. The toolbox initially builds a mesh by taking into account the topology
of the solution. For example, a disk-shaped mesh with smaller triangles and minimum
edge size hmin = hmax/45 in its center is used for studying a 2D vortex configuration.
The mesh is refined at each iteration in Newton’s method in regions of large gradients (e.g.
around solitons or vortices) and de-refined otherwise (zones of constant density) when
adaptive mesh refinement is chosen, see Sec. 3.3. For a given case, we draw comparisons
in Table 1 between results that were obtained with 4 MPI processors and without MPI
using adaptive mesh refinement. We draw also comparisons in Table 2 for more complex
3D cases. As a general recommendation, we suggest to use adaptive mesh refinement
while exploring branches of solutions for which their topology is unknown.

without MPI 4 MPI processors
CPU time CPU time CPU time CPU time

niter GP BdG mesh size GP BdG mesh size
2D ground state 1 00:00:05 00:00:26 10,900 00:00:03 00:00:12 10 866
2D dark soliton 208 00:19:12 00:58:18 20,912 00:06:58 00:26:01 19 859
3D ground state 133 01:09:16 05:51:27 46,681 00:14:44 04:58:57 47 097

Table 1: Results on test cases for the one-component GP and BdG problems with mesh adaptivity.
Results are presented with 4 MPI processors and without MPI. The computational time, the mesh size
(number of elements) and the number of continuation steps (niter) performed for each case are shown.
When using mesh adaptivity, the size of the mesh for the last step of the continuation is depicted in
the mesh size column. For 2D cases we compute 100 eigenvalues whereas for the 3D ground state, we
compute 40 eigenvalues only. The user can compute more eigenvalues if more memory is available. The
BdG spectrum is computed every other two (continuation) steps in µ. The computations were performed
on a Macbook pro M1, 16GB of DDR4 2400 MHz RAM.

GP test cases Processors CPU time ncont ndof nt maxRSS
3D dark soliton 28 00:01:01 168 205,822 76,455 0.78 Gb
3D vortex line single 28 00:04:02 168 329,988 122,969 0.79 Gb
3D vortex ring 2vortex lines 56 00:05:19 201 654,802 244,597 1.10 Gb

BdG test cases Processors CPU time nBdG ndof nnz maxRSS
3D dark soliton 28 00:01:30 56 103,116 11,782,505 3.07 Gb
3D vortex line single 28 00:03:41 56 165,362 18,934,023 7.09 Gb
3D vortex ring 2vortex lines 56 00:08:02 67 327,887 37,600,455 8.57 Gb

Table 2: Summary of results on 3D test cases for the one-component GP and BdG problems with mesh
adaptivity. The number of processors, the mean CPU time per each continuation step, the total number
of continuation steps (ncont) performed (for tracing the respective branches) are shown. Moreover, the
table contains the number of times the BdG problem was solved (nBdG; we computed the eigenvalues at
every 3 continuation steps in µ), the number of unknowns (ndof), the number of tetrahedra (nt), the
number of non-zero elements (nnz) of the matrix used for the computation of the BdG spectra, the
estimated memory used for each processor maxRSS. For all test cases, 80 eigenvalues were computed
in the BdG problem only. Again, the user can compute more eigenvalues if more memory is available.
The present computations were performed on the CRIANN Computing Center and MATRICS platform
utilizing an Intel Broadwell E5-2680 v4 @ 2.40GHz (14 cores per socket) architecture with two sockets
per node and 128 GB of DDR4 2400 MHz RAM. An Intel Omnipath 100Gb/s low latency network was
used for communications.
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6. Validation test cases for the two-component BEC

We now move on to the study of localized configurations in two-component GP
equations (10). Admittedly, the study of their existence, and more crucially, their BdG
spectrum (upon solving Eqs. (13)-(14)) places them in an one level harder category.
Indeed, the size of the BdG problem for 2D and (even more) 3D configurations becomes
quite large, especially when one wants to provide a detailed and accurate description
of the spectral properties of such configurations. However, the combination of mesh
adaptivity implemented in FreeFEM with parallelization tools provided by PETSc makes
the present toolbox a great candidate to compute such challenging 3D cases. Table 3
summarizes the test cases we considered, and has the same format as Table 2.

GP test cases Processes CPU time ncont ndof nt maxRSS
2D vortex-antidark 4 00:00:17 46 30,506 3,744 1,11 Gb
2D ring-antidark 4 00:00:09 105 37,847 4,634 4,53 Gb
2D dark-bright-soliton 4 00:00:12 81 27,775 3,399 0,34 Gb
2D ground-state-soliton-necklace 4 00:00:29 81 58,081 7,175 2,22 Gb
2D ground-state-multipole 4 00:00:28 81 41,717 5,131 1,42 Gb
3D dark-bright-soliton-stripe 28 00:02:18 81 24,698 3,936 1,22 Gb
3D vortex-ring-bright-state 28 00:03:52 81 24,578 3,935 1,16 Gb

BdG test cases Processes CPU time nBdG ndof nnz maxRSS
2D vortex-antidark 4 00:00:31 46 27,787 5,125,301 0,78 Gb
2D ring-antidark 4 00:00:41 91 37,791 6,946,743 1,02 Gb
2D dark-bright-soliton 4 00:00:33 81 25,303 4,644,479 0,75 Gb
2D ground-state-soliton-necklace 4 00:01:03 81 55,155 10,136,839 1,43 Gb
2D ground-state-multipole 4 00:00:37 81 38,882 7,142,816 1,11 Gb
3D dark-bright-soliton-stripe 28 00:03:56 81 72,202 32,963,342 6,70 Gb
3D vortex-ring-bright-state 28 00:03:21 81 71,627 32,681,221 7,03 Gb

Table 3: Same as Table 2, but for the two-component GP and BdG problems (again, with mesh
adaptivity). Note that 100 and 60 eigenvalues were computed for all 2D and 3D test cases, respectively.
The continuations (and thus BdG computations) were performed over β12 for the 2D vortex-antidark
and 2D ring-antidark states whereas for the rest of the cases, over µ2.

6.1. 2D two-component BEC test cases
The first two-component BEC validation cases consider two states taken from [28]

and analyzed in detail in [56]: vortex-antidark and dark-antidark ring solutions. The
corresponding parameter files are BdG 2comp ddm/INIT/2D vortex-antidark.inc and
BdG 2comp ddm/INIT/2D ring-antidark.inc, respectively. Such bound modes emerge
in two-component GP equations due to the inter-component interaction. Indeed, a dark
soliton or a vortex (or a ring) in ϕ1 will induce an effective potential through the inter-
component nonlinearity which itself “traps” a localized mode in ϕ2. As a consequence,
atoms in ϕ2 “fill-in” the density dip of ϕ1 through this (effective) trapping process. The
scripts compute solutions to the GP system (10) in the case of repulsive inter-component
interactions with miscibility condition 0 ≤ β12 <

√
β11β22. To simplify the case study,

we set β11 = β22 = β = 1, β12 = β21, and 0 < β12 < β, since only the ratio between
non-linear interaction coefficients matters. The pictures illustrating these cases (stationary
solutions and BdG spectra) are not shown, since identical to those presented in [56].
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The last 2D cases consider more exotic states that were recently studied in [34]. Since
the construction of the initial condition is crucial in capturing these states, we briefly
present the main technical details. At first, we construct the ground state of Eq. (3) by

ϕ =
√
ω⊥

2π H0( √
ω⊥x)H0( √

ω⊥y)e− 1
2 ω⊥(x2+y2), (33)

and use it to seed Newton’s method with β = 1.03 and ω⊥ = 0.2. The branch of the ground
state is traced from µ ≈ 0.202, i.e. close to the linear limit where this state bifurcates
from, until µ = 1. For this computation, we use the program for the one-component BEC
with parameter file BdG 1comp ddm/INIT/2D Hermite LL phi1.inc.

The terminal profile ϕ, now called ϕ1, is extracted while setting µ1 = µ = 1. Then, we
focus on Eq. (10) with β11 = 1.03, β22 = 0.97, and β12 = 1 (ω⊥ = 0.2 and µ1 = 1 are as
before). Following the approach discussed in [25], we plug the (terminal) profile ϕ1 into
the equation for ϕ2 [cf. Eq. (10)], and linearize it with respect to ϕ2. This process results
in the following eigenvalue problem for (µ2,ϕ2)

−1
2∇2ϕ2 + Ceffϕ2 = µ2ϕ2 (34)

with Ceff = Ctrap + β21|ϕ1|2 being the effective potential [25] which is responsible for
“trapping” bound modes in the ϕ2 component of Eq. (10). Equation (34) is solved
numerically in the script BdG 2comp ddm/FFEM LL 2c 2D 3D ddm.edp (using parameter
.inc files specified below for each case) to obtain eigenvalue-eigenvector pairs (µ2,ϕ2),
that together with (µ1,ϕ1) form the initial guess that we seed to Newton’s method.
We then trace branches of bound modes of the coupled system of Eq. (10), over the
principal continuation parameter µ2. Note that upon selecting a pair (µ2,ϕ2), we perform
continuation from µ2 until µ2 + 0.4 in all the cases. The toolbox computes the following
states that are illustrated in Fig. 3 (atomic density of the state computed for the last
value of µ2) and Fig. 4 (BdG spectra):

• 2D state with a dark-soliton in one component and a bright-soliton in the other
one (parameter file BdG 2comp ddm/INIT/2D dark-bright-soliton.inc). This
solution (first column of Fig. 3) corresponds to the first eigenvalue of problem (34)
and bifurcates from the linear limit at µ2 ≈ 1.05133. This state is unstable over µ2
(see Fig. 4a) except from a very narrow window of stability close to the linear limit
(see also Fig. 2a in [34], and references therein).

• 2D state with ground-state in one component and soliton necklace in the other one
(parameter file BdG 2comp ddm/INIT/2D ground-state-soliton-necklace.inc).
This branch (second column of Fig. 3) corresponds to the 7th eigenvalue of problem
(34) and bifurcates from the previous solution at µ2 ≈ 1.23276. It involves a soliton
necklace in ϕ2 (note its imprint on ϕ1). Similar to the previous case, this state is
unstable (see also Fig. 1a in [34]) but features a very narrow window of stability as
is shown in panel b of Fig. 4.

• 2D state with ground-state in one component and a multipole in the other one
(parameter file BdG 2comp ddm/INIT/2D ground-state-multipole.inc). This so-
called multipole branch (third column of Fig. 3, see also Fig. 16c in [34]) corresponds

20



to the 8th eigenvalue of problem (34) and bifurcates from the linear limit at
µ2 = 1.29325. It can be described by the combination of Cartesian (i.e. Hermitian)
eigenstates |2, 1⟩ + |0, 3⟩.

All the cases that we discussed here match perfectly with the numerical results of [34].

Figure 3: 2D two-component BEC with soliton and necklace configurations. Density profiles of each of
the components, i.e. |ϕ1|2 (top row) and |ϕ2|2 (bottom row), for different values of µ2 (the last value
considered in the continuation procedure). From left to right: the dark-bright soliton state, ground state
and soliton necklace state, ground state and multipole state.
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Figure 4: 2D two-component BEC with soliton and necklace configurations. The BdG spectra as functions
of µ2 corresponding to a) the dark-bright soliton branch, b) ground state (ϕ1) and soliton necklace
(ϕ2) branch, and c) the ground state and multipole branch. Each of these branches bifurcate from
(µ1, µ2) ≈ (1, 1.05133), (1, 1.23276), and (1, 1.29325).

21



6.2. 3D two-component BEC test cases
We present two 3D two-component BEC configurations that are very challeng-

ing when computing the BdG spectra. To capture branches of solutions, we em-
ploy the same “trapping” technique that was discussed for the 2D two-component
cases. The wave function ϕ1 carries the ground state, and is obtained by running
the script for the one-component BEC with β = 1.03 and ω⊥ = 1 and parameter
file BdG 1comp ddm/INIT/3D Hermite LL phi1.inc. Continuation over µ from its linear
limit, i.e. µ ≈ 1.501, is stopped at µ = 2. Then, the eigenvalue problem (34) is solved by
the script BdG 2comp ddm/FFEM LL 2c 2D 3D ddm.edp (using parameter .inc files speci-
fied below for each case) to obtain the eigenvalue-eigenvector pairs (µ2,ϕ2). This way,
and upon selecting an eigenvalue-eigenvector pair of our choice, we trace branches of 3D
bound modes of Eq. (10) by performing continuation over µ2 (while setting β11 = 1.03,
β22 = 0.97, β12 = 1) for fixed ω⊥ = 1 and µ1 = 2. We stop the continuation process
when the continuation parameter reaches µ2 + 0.4, i.e. being 0.4 units far away from the
respective linear limit of ϕ2.

With this technique, we can obtain the following 3D states illustrated in Fig. 5 (BdG
spectra in the first column and density for the last value of µ2 in the second column):

• 3D state with ground state in ϕ1 and the planar dark soliton in ϕ2 (parameter
file BdG 2comp ddm/INIT/3D dark-bright-soliton-stripe.inc.) This state cor-
responds to the first eigenvalue of (34) and represents a dark-bright soliton stripe
in 3D (see Fig. 5a and also [19]. It bifurcates from its linear limit at µ2 ≈ 2.79467.
It can be classified in terms of Cartesian eigenfunctions as |0, 1, 0⟩. Our numerical
results on its BdG spectrum show that the state is stable from its inception until
µ2 ≈ 2.902 when it becomes unstable.

• 3D state with ground state in ϕ1 and a vortex-ring state in ϕ2 (parameter file
BdG 2comp ddm/INIT/3D vortex-ring-bright-state.inc.) This vortex-ring-bright
state (see Fig. 5b) was obtained for µ1 = 2 and corresponds to the 6th eigenvalue
of (34). It bifurcates from the linear limit of ϕ2 at µ2 = 3.67602 and is generically
unstable as shown by its BdG spectrum. Note that in the one-component setting, the
vortex-ring state can be classified in terms of a combination of Cartesian eigenstates
as 1√

2 (|2, 0, 0⟩ > +|0, 2, 0⟩) + i|0, 0, 1⟩[54].

7. Description of the programs

In this section, we first describe the architecture of the programs and the organization
of the provided files. We then present the input parameters and the structure of the
output files.

7.1. Program architecture
Codes and data files forming the BdG problem with the domain decomposition

method (DDM) are stored in the FFEM BdG ddm toolbox directory. The latter is or-
ganized in two main subdirectories: BdG 1comp ddm and BdG 2comp ddm, correspond-
ing to the one- and two-component codes. Each subdirectory contains two main files:
FFEM GP $case ddm.edp, which is the main FreeFEM script file for the computation of
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Figure 5: 3D two-component BEC cases. BdG spectra over µ2 and atomic density for the two components
for the last value of µ2 considered in the continuation procedure: a) the dark-bright soliton stripe (with
the ground state in ϕ1 and the planar dark soliton in ϕ2), and b) vortex-ring-bright state (with the
vortex-ring state in ϕ2).

the stationary state, and FFEM BdG $case ddm.edp which is the main FreeFEM script
file for the computation of the BdG eigenvalues ($case=1c 2D 3D for the one-component
case and $case=2c 2D 3D for the two-component case).

To run these codes, first of all, the user must install FreeFEM with PETSc following the
instructions in https://doc.freefem.org/introduction/installation.html. Then,
the user can run the FreeFEM code for the computation of the GP stationary state by
using either the command
mpirun -np 4 FreeFem++-mpi FFEM GP $case ddm.edp
or
ff-mpirun -np 4 FFEM GP $case ddm.edp.
The BdG eigenvalues can then be computed by typing (in terminal) either
mpirun -np 4 FreeFem++-mpi FFEM BdG $case ddm.edp
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or
ff-mpirun -np 4 FFEM BdG $case ddm.edp.
Parameter files for the examples presented in this paper are stored in the INIT folder.

The obtained solutions are saved in the dircase directory. Depending on the output
format selected by the user, data files are generated in specific folders for visualization with
Tecplot3, ParaView4, and Gnuplot5. We also provide ready-made layouts for visualization
with Tecplot in the folder Figures. The user can thus obtain the figures from this paper
using newly generated data. More details about the output structure are given in Sect.
7.4.

The complete architecture of the BdG 1comp ddm and BdG 2comp ddm directories is the
following:

1. FFEM GP $case ddm.edp: the main script for computing GP stationary states.
2. FFEM BdG $case ddm.edp: the main script for computing the BdG spectrum.
3. FFEM LL $case ddm.edp: the main script for solving the eigenvalue problem of Eq.

(34) (i.e. for finding the eigenvalue-eigenvector pairs (µ2,ϕ2)). This script is used
only for the two-component BEC cases.

4. param num common.inc: a parameter file containing main numerical parameters.
5. INIT: directory storing the parameter files for the examples presented in Sects. 5

and 6.
6. Figures: directory containing Tecplot layouts used to replot the figures shown in

Sects. 5 and 6. The main code must be run with the associated example before
opening the layout to replot the figure.

7. A macro: directory containing macros used in the main scripts for GP and BdG
problems.

8. A macro LL: directory containing macros used in the main scripts for the study of
respective linear limits (LL).

7.2. Macros and functions
The different macros and functions used in the toolbox for the sequential code are

stored in the A macro folders:

• Macro BdGsolve.edp: macro for computing the BdG eigenvalues associated with
matrices of Eqs. (28) and (30).

• Macro createdir.edp: macro for creating the file structure of the dircase folder.

• Macro globalpartition.edp: macro for creating a partition of the global mesh, and
sending the solution from the global mesh to the local one.

• Macro GPsolve.edp: macro for computing the GP stationary state with Newton’s
method (see Eqs. (19) and (23)-(26)).

• Macro LLsolve.edp: macro for computing the eigenvalues of Eq. (34).

3https://tecplot.com
4https://www.paraview.org
5http://www.gnuplot.info
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• Macro meshAdapt.edp: macro for adapting the mesh to the wave function.

• Macro onedomainsol.edp: macro for sending the solution from the local domain to
the global one.

• Macro operator.edp: collection of useful macros and functions: gradients, energy
(4), chemical potential, Hermite polynomials, etc. Also contains a macro creating a
spherical mesh for 3D problems.

• Macro output.edp: macros used for saving data in Tecplot and ParaView formats.

• Macro plotEigenvector.edp: macro for plotting the real and imaginary parts of a
BdG eigenvector.

• Macro plotphi.edp: macro for plotting the complex wave function. The user can
press ”k” to alternate between plots of the density, phase and real and imaginary
parts of the wave function.

• Macro problem.edp: definitions of the weak formulations for the GP [cf. Eqs. (19)
or (30)], the BdG problems [cf. Eqs. (28) or (23)-(26)] and the linear limit problem
[cf. Eq. (34)].

• Macro readmu.edp: macro to read the µ from dircase/Gnuplot/GP results.dat,
and compute the corresponding BdG eigenvalues.

• Macro readmubeta.edp: macro to read the values of µ or β from GP mucont results.dat
or GP betacont results.dat that are contained in dircase/Gnuplot/ in order
to compute the corresponding BdG spectrum.

• Macro restart.edp: macros used to save and load the wave function to or from
FreeFEM files.

• Macro saveData.edp: macro for saving the stationary wave function.

• Macro saveEigenvalues.edp: macro for saving the BdG eigenvalues and eigenvectors.

7.3. Input parameters
Parameters are separated in two files. Numerical parameters used in all computations

are specified in param num common.inc. Files in the INIT directory specify physical
parameters associated with the state of interest, computation and numerical parameters
specific to this problem. The files distributed with the toolbox provide a variety of
examples that can be used as a starting point when selecting parameters for the study of
new states.
(1) In the file param num common.inc, the parameters are:

• displayplot: controls the output information to plot. Possible values range from 0
(no plots), to 2 (plots data at all iterations of Newton’s method, and all eigenvectors
computed by the BdG code).

• iwait: Boolean indicating if the code must wait for user’s input when a plot is
shown (true) or it can continue (false) with the next plot.
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• cutXY, cutXZ, cutYZ: (only for 3D cases in the one-component case) Booleans
indicating whether to plot cuts of the wave function along the different axis at
x = 0, y = 0 or z = 0.

• Tecplot: Boolean indicating whether to save data in the Tecplot format.

• Tecplotddm: for saving solution for Tecplot with DDM or not.

• Paraview: Boolean indicating whether to save data in the ParaView format (only
in 2D and 3D).

• adaptinit: if true, the initial solution is recomputed after the first mesh adaptation.

• adaptmeshFF: determines if mesh adaptation is used (true) or not (false).

• useShift: Boolean indicating whether to use a shift when computing the BdG
eigenvalues (see, Sec. 4).

• Nadapt: if mesh adaptation is used, then the mesh is adaptated every Nadapt
iterations during the continuation.

• Nplot: the wave function is plotted every Nplot iterations during the continuation.

• Nsave: the wave function is saved for ParaView or Tecplot every Nsave iterations
during the continuation.

• Nrst: the wave function is saved for the BdG computation every Nrst iterations
during the continuation.

• tolerrF: the tolerance value ϵF in Eq. (27).

• tolNewton: the tolerance value ϵq in Eq. (27).

• shift: the value of the shift σ used when computing eigenvalues.

• shiftLL: the value of the shift σ used when computing eigenvalues close to the
linear limit.

• shiftFLL: the value of the shift σ used when computing eigenvalues far from the
linear limit.

• adaptboundary: to adapt (==0) or not (==1) the boundary of the mesh in 3D.

• skipBdG: the value to skip µ or β12 computed with GP for BdG computation.

• muL, mubetaL: to switch between using shiftFLL or shiftLL, if µ or µ1 or µ2
or β12 <mubetaL we use shiftLL otherwise we use shiftFLL.

• LL: Boolean indicating whether we want to compute the linear limit, i.e. eigenvalue
problem for (µ2,ϕ2) for the second component or no.

• NNZ: contain the non zero elements (nnz) for the BdG matrix.

• dmuk: counter for dmu adaptation.
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• FINAL: Boolean to run the final solution of endmu in the GP continuation or to
stop the BdG computation.

• newtonMax: the maximum number of Newton iterations.

(2) In the file $case.inc, stored in the INIT directory, the parameters are:

• General parameters for the case:
• dimension: the dimension of the problem (2 or 3).
• FEchoice: the type of finite element used. Usually P2.
• nev: the number of eigenvalues computed by the BdG code.

• Parameters used to restart a computation:
• restart: Boolean indicating if the initial solution is a restart from a previous
computation. If true, the solution and mesh stored in dirrestart for the value of
µ given by murestart will be used as initial solution.
• murestart: the initial value of µ in the case of a restart.
• dirrestart: the folder where the initial solution is stored in the case of a restart.

• Parameters of the continuation:
• kpol, lpol, mpol: integers defining the initial state in the linear limit.
• startmu: the initial value of µ.
• endmu: the final value of µ.
• dmu: the increment in µ during the continuation.
• facmu: when using the linear limit, the initial value of µ is given by facmu ·µ|klm⟩.
• mubeta: a macro that contains the name of the variable that we want to do the
continuation over it: µ1,µ2,β12 or β21.

• Coefficients of the GP equation:
• beta: the nonlinear coefficient (we set β = 1 in all test cases except for the linear
limit cases where β = 1.03).
• ax, ay, az: the frequencies of the trapping potential along the three coordinate
axes.
• Ctrap: a function defining the trapping potential.

• Parameters for the mesh generation:
• Dx: the distance between points on the mesh border.
• scaledom: a coefficient used to control the size of the domain: the mesh radius
is given by Rdom = scaledom · rTF, where rTF is the Thomas-Fermi radius.
• createMesh: a macro creating the initial mesh Th.

• Parameters for the mesh adaptation:
• errU: the interpolation error level.
• hmin: the minimum length of a mesh element edge in the new mesh.
• hmax: the maximum length of a mesh element edge in the new mesh.
• adaptratio: the ratio for a prescribed smoothing of the metric. No smoothing is
done if the value is less than 1.1.
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• Parameters for the initial solution:
• initname: the name given to the initial solution.
• initcond: a macro defining the initial solution for the phi variable.

• Definitions of the boundary conditions:
• BCGP: the boundary conditions used in the GP code for Eqs. (19) and (23)-(26).
• BCBdG: the boundary conditions used in the BdG code for Eqs. (28) and (30).
• BCLL: the boundary conditions used in the LL code for Eq. (34).
• fcase: the name given to the current computation.
• dircase: the directory where the results are stored.

(3) In a two component case, some new parameters are defined in the $case.inc file:

• Parameters used to restart a computation:
• mu1restart, mu2restart: initial values of µ1 and µ2 in the case of a restart.
• beta12restart, beta21restart initial values of β12 and β21 in the case of a
restart.

• Parameters of the continuation:
• startmu1, startmu2: initial values of µ1 and µ2.
• endmu1, endmu2: final values of µ1 and µ2.
• dmu1, dmu2: increments of µ1 and µ2 during the continuation.
• startbeta12, startbeta21: initial values of β12 and β21.
• endbeta12, endbeta21: final values of β12 and β21.
• dbeta12, dbeta21: increments of β12 and β21 during the continuation.

• Coefficients of the GP equation:
• beta11, beta12: nonlinear coefficients β11 and β22.

• Parameters for the initial solution:
• initname1: the name given to the initial solution for the first component.
• initname2: the name given to the initial solution for the second component.
• initcond: a macro defining the initial solution for [phi1,phi2] variables.

7.4. Outputs
When a computation starts, the OUTPUT $case directory is created. It contains up

to eight folders. The RUNPARAM GP, RUNPARAM BdG, and RUNPARAM LL directories contain
a copy of the code and data files, thus allowing an easy identification of each case, and
preparing an eventual rerun of the same case at a later time. The other folders contain
different output format files of the computed solution for its visualization using Tecplot,
ParaView or Gnuplot. The content of these subfolders depends on the case and on the
computation parameters (differences in the two component code are given in parenthesis):

1. The Gnuplot folder contains two files:
• Information about the stationary states are stored in the GP results.dat file
(GP mucont results.dat or GP betacont results.dat file). The columns appear
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in the following order: the non-linear coefficient β (β12 and β21), the imposed
chemical potential µ (µ1 and µ2), the number of Newton iterations used for this
value of µ, the norms associated with ϵF and ϵq in Eq. (27), the computed value of
the chemical potential (computed values of µ1 and µ2), the number of atoms (5)
(the number of atoms in the two components), the GP energy, the mesh size, the
number of degrees of freedom, the CPU time to compute the stationary state, and
the value of the current δµ (δµ1, δµ2).
• BdG eigenvalues are stored in the BdG results.dat file. The columns appear
in the following order: the non-linear coefficient β (β12 and β21), the imposed
chemical potential µ (µ1 and µ2), the eigenvalue number between 0 and nev, the
real and imaginary part of the eigenvalues, the Krein signature and its sign (the
Krein signature and its sign for the two components).
• BdG’s numerical information is stored in the BdG num results.dat file. The
columns appear in the following order: the non-linear coefficient β (β12 and β21),
the imposed chemical potential µ (µ1 and µ2), the non zero element for the BdG
matrix, the number of degrees of freedom, the CPU time to compute the eigenvalues,
and the cumulative CPU time.

2. The Paraview folder contains the wave functions stored as .vtk or .vtu and .pvd
files:
• phi init.vtu and phi final.vtu are the initial and final solutions.
• phi mu $mu.vtu contains the stationary wave function for a given value of µ.
• phi mu1 $mu1 mu2 $mu2.vtu contains the stationary wave function for given values
of µ1 and µ2 in the first continuation.
• phi beta12 $beta12 beta21 $beta21.vtu contains the stationary wave function
for given values of β12 and β21 in the second continuation.

3. The Paraview Eigenvectors folder contains the eigenvectors stored as:
• eVec mu $mu $nev.vtu in the one-component code.
• eVec beta12 $beta12 beta21 $beta21 mu1 $mu1 mu2 $nev.vtu in the two-component
code.

4. The RST folder contains the stationary states stored as FreeFEM files. The names
are:
• RST-$mu.rst or RST-$mu1-$mu2-$beta12-$beta21.rst for the data.
• RSTTh-$mu or RSTTh-$mu1-$mu2-$beta12-$beta21 for the mesh files. The file
extensions are .msh (in 2D) or .meshb (in 3D).

5. The RST LL folder contains the stationary states stored as FreeFEM files. The names
are:
• LL mu1-$mu1 ip-$mu2.rst for the data.
• LLTh mu1-$mu1 ip-$mu2 for the mesh files. The file extensions are .msh (in 2D)
or .meshb (in 3D).

6. The Tecplot folder contains the wave functions stored as .dat Tecplot files:
• phi init.dat and phi final.dat are the initial and final solutions.
• phi mu $mu.dat contains the stationary wave function for a given value of µ.
• phi mu1 $mu1 mu2 $mu2.dat contains the stationary wave function for given values
of µ1 and µ2 in the first continuation.
• phi beta12 $beta12 beta21 $beta21.dat contains the stationary wave function
for given values of β12 and β21 in the second continuation.

7. The Tecplot Eigenvectors folder contains the eigenvectors stored in the Tecplot
format: 29



• eVec mu $mu $nev.dat in the one-component code.
• eVec beta12 $beta12 beta21 $beta21 mu1 $mu1 mu2 $nev.dat in the two-component
code.

8. The Tecplot Eigenvalues folder contains the file BdG results eig.dat with all
the eigenvalues stored in the Tecplot format.

8. Summary and conclusions

The experimental realization of single- and two-component BECs in higher spatial
dimensions has admittedly been an exciting journey in understanding the fundamental
properties of matter at ultracold temperatures. In parallel, however, this journey has posed
computational challenges pertaining about not only the existence of matter waves in GP
equations (single and two-component versions thereof) but more crucially, their spectral
stability analysis, i.e. BdG spectrum. The study of the BdG spectrum often results in
solving a very large eigenvalue problem, a task that is computationally demanding and
requires the use of parallelization. With the present work, we took up this challenge, and
presented as well as delivered a parallel finite-element toolbox for computing the BdG
spectrum of stationary solutions to one- and two-component GP equations in 2D and 3D.

The toolbox was created with the open-source, finite-element software FreeFEM which is
now interfaced with parallel libraries such as PETSc and SLEPc. The ability of FreeFEM to
perform adaptive mesh refinements, together with the use of parallel linear solvers such
as domain decomposition and algebraic multigrid methods in PETSc, makes the present
toolbox a versatile tool for studying 2D and 3D configurations to GP equations within
reasonable CPU times. The computation of the BdG spectrum that is carried out in the
present toolbox consists of two steps. At first, stationary states are identified by using
Newton’s method which now has access to parallel linear solvers from PETSc. Moreover, a
natural parameter continuation method is adopted to obtain branches of solutions to GP
equations over the chemical potential µ or the inter-component interaction parameters β12
and β21. Upon tracing branches of solutions, the BdG spectrum is computed afterwards
by solving the associated eigenvalue problem with SLEPc.

We successfully verified our toolbox’s results against known theoretical and numerical
findings that have been published in the open literature. We reported typical CPU times
that render the toolbox to be used on ordinary laptops and small workstations (of course,
depending on the complexity of the state of interest). The parameter files of the toolbox
correspond to the test cases we presented in this paper, and they can be used by the user
to reproduce the results. We further provide these files from the scope of getting used as
templates, if the user intends to compute a new BEC setup or case of interest. We hope
that the description and documentation of the toolbox will allow the user in a convenient
way to consider other types of trapping potentials e.g. quartic ± quadratic trapping ones
[75], and nonlinearities, such as the non-local ones appearing in dipolar settings, e.g. see
[76].

There is clearly a broad array of future computational explorations and developments
stemming from this work that we briefly mention here. First, we implemented a natu-
ral (or sequential) continuation approach to trace branches of solutions in the present
toolbox. It will be quite interesting to consider other types of continuation approaches
in FreeFEM including the pseudo-arclength continuation [77, 78], asymptotic numerical
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method (ANM) [79], and deflation-based techniques [34, 35, 54, 72], among many oth-
ers. Another possibility concerns about the interfacing of other libraries for eigenvalue
computations, including the FEAST eigenvalue solver [80] which enjoys multiple levels of
parallelization [81]. Finally, with the recent experimental developments on spinor conden-
sates [82, 83] described by more than two GP equations (see, e.g. [33] where the authors
considered a three-component GP system for studying monopoles and Alice rings), it is
thus timely to bring forth state-of-the-art computing methodologies in order to elucidate
the configuration space of solutions in these experimentally accessible systems. Such
computational studies and software development in FreeFEM are currently in progress
and will be reported in future contributions.
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K. Bongs, K. Sengstock, Oscillations and interactions of dark and dark–bright solitons in Bose-
Einstein condensates, Nature Physics 4 (2008) 496–501.

31



[12] K. W. Madison, F. Chevy, W. Wohlleben, J. Dalibard, Vortex formation in a stirred bose-einstein
condensate, Phys. Rev. Lett. 84 (2000) 806–809.

[13] P. C. Haljan, I. Coddington, P. Engels, E. A. Cornell, Driving Bose-Einstein condensate vorticity
with a rotating normal cloud, Phys. Rev. Lett. 87 (2001) 210403–210407.

[14] D. Yan, J. J. Chang, C. Hamner, P. G. Kevrekidis, P. Engels, V. Achilleos, D. J. Frantzeskakis,
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