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A B S T R A C T

I first recall the theoretical background relevant to spectral truncation: absolute equilibrium in helical flows
and compressible effects. Thermalization phenomenology in Gross–Pitaevskii superflows and thermalization
processes in classical systems are then briefly reviewed. The so-called ’tygers’ that appear in the truncated
inviscid Burgers equation are demonstrated. The basic definitions that relate the Burgers equation to the
Kardar–Parisi–Zhang system are recalled. Spectral truncation and conserved quantities are used to introduce
the microcanonical and canonical stationary probabilities. The main results on the crossover from absolute
equilibrium to Kardar–Parisi–Zhang scaling are finally given after a brief discussion of the relevant physical
parameters. The present contribution is thus a short review of the publications, scientific developments and
collaborations that went on during the last decade and led to the joint work (Cartes et al., 2022) that I
presented at the XVIII Instabilities and Nonequilibrium Structures Workshop held (online) in December 2021
in Valparaiso (Chile), dedicated to the memory of the late Enrique Tirapegui.
1. Introduction

Time-reversible spectrally-truncated hydrodynamical systems, re-
taining only a finite number of Fourier modes, have been studied
actively in fluid mechanics [1–5]. T. D. Lee, in his 1952 pioneer-
ing work [1], showed that these truncated systems satisfy Liouville’s
theorem and that (assuming ergodicity) there is energy equipartition
among the spectral modes. A different approach was proposed later
by Kraichnan [4] for these absolute equilibrium states by considering
that the complex amplitudes of the Fourier modes followed a canonical
distribution, controlled by the mean values of the invariants of the
system.

The present short review is dedicated to the memory of Enrique
Tirapegui. It takes as a starting point the situation described in our
previous paper on absolute equilibrium of Galerkin truncated flows
that was published in 2009 [6]. In this reference, we introduced a
new algorithm to construct absolute equilibrium of spectrally truncated
compressible flows. This new algorithm allowed us to generalize to
the compressible case results that were previously known only for
incompressible flows. During the decade that followed, scientific col-
laborations went on and finally led to the joint work that was published

∗ Correspondence to: Laboratoire de Physique de l’Ecole Normale Supérieure, ENS, Université PSL, France.
E-mail address: marc-etienne.brachet@phys.ens.fr.

in Ref. [7] and presented at the XVIII Instabilities and Nonequilibrium
Structures Workshop held (online) in December 2021 in Valparaiso
(Chile). A common point shared by the works reviewed here is that they
involve absolute equilibrium in the presence of compressible effects (or,
more generally, waves).

The paper is organized as follows. In Section 2, after an introduction
to the theoretical background needed to understand spectral truncation
and absolute equilibrium of helical flows, the algorithm introduced
in Ref. [6] is recalled. The various topics to which these methods
were applied are then reviewed: thermalization in the Gross–Pitaevskii
equation, applications of thermalization process to classical systems
and, finally, the so-called ‘tygers’ that appear in the thermalization of
the truncated inviscid Burgers equation. Section 3 is devoted to the
collaboration that led to the publication of Ref. [7]. After recalling the
basic definitions that relate the Burgers equation to the Kardar–Parisi–
Zhang system, the spectral truncation and conserved quantities are
reviewed to introduce the corresponding stationary probability. After
a brief discussion of the physical parameters the main results on the
crossover are given. Finally Section 4 is the conclusion.
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2. From incompressible flows to the Burgers equation

2.1. Spectral truncation and absolute equilibrium

The spectrally-truncated hydrodynamical system that was most ex-
tensively studied is the 3𝐷 Euler equation

𝑡𝐮 + (𝐮 ⋅ ∇) 𝐮 = −∇𝑝

∇ ⋅ 𝐮 = 0, (1)

or a classical, ideal fluid which can be studied efficiently, in a spatially
eriodic domain, by the Fourier pseudospectral method [8,9].

With spherical spectral truncation performed at wave-number 𝑘max
1) yields [10,11] the following finite system of ordinary differential
quations for the Fourier transform of the velocity �̂�(𝐤) (𝐤 is a 3𝐷 vector
f relative integers satisfying |𝐤| ≤ 𝑘max):

𝜕𝑡�̂�𝛼(𝐤, 𝑡) = − 𝑖
2
𝛼𝛽𝛾 (𝐤)

∑

𝐩
�̂�𝛽 (𝐩, 𝑡)�̂�𝛾 (𝐤 − 𝐩, 𝑡), (2)

where 𝛼𝛽𝛾 = 𝑘𝛽𝑃𝛼𝛾 + 𝑘𝛾𝑃𝛼𝛽 with 𝑃𝛼𝛽 = 𝛿𝛼𝛽 − 𝑘𝛼𝑘𝛽∕𝑘2 and repeated
indices are summed over.

This finite number of ordinary differential equations is a time-
reversible system that exactly conserves both energy 𝐸 =

∑

𝑘 𝐸(𝑘, 𝑡)
and helicity 𝐻 =

∑

𝑘 𝐻(𝑘, 𝑡), where energy 𝐸(𝑘, 𝑡) and helicity 𝐻(𝑘, 𝑡)
spectra are defined by integrating respectively 1

2 |�̂�(𝐤
′, 𝑡)|2 and �̂�(𝐤′, 𝑡) ⋅

�̂�(−𝐤′, 𝑡) over spherical shells of width 𝛥𝑘 = 1 (𝝎 = 𝛁×𝐮 is the vorticity).
The truncated Euler equation dynamics is expected to reach at large

times an absolute equilibrium that is a statistically stationary gaussian
exact solution of the associated Liouville equation [12]. When the flow
has a non vanishing helicity, the absolute equilibria of the kinetic
energy and helicity predicted by Kraichnan [13] are

𝐸(𝑘) = 𝑘2

𝛼
4𝜋

1 − 𝛽2𝑘2∕𝛼2
; 𝐻(𝑘) =

𝑘4𝛽
𝛼2

8𝜋
1 − 𝛽2𝑘2∕𝛼2

; (3)

where 𝛼 > 0 and 𝛽𝑘max < 𝛼 to ensure integrability. The values of
𝛼 and 𝛽 are uniquely determined by the total amount of energy and
helicity (verifying |𝐻| ≤ 2𝑘max𝐸) contained in the wavenumber range
[1, 𝑘max] [13].

It has been discovered recently that the transient period during
which the ideal truncated system reaches equilibrium can mimic forced
and dissipative systems. It was originally suggested by Kraichnan and
Chen [14] that, considering spatial modes that have not yet thermal-
ized, conservative truncated systems can behave as dissipative ones.
The underlying idea is that high wavenumber thermalized modes can
act as an energy sink for low wavenumber modes, which will thus
behave as if the turbulent flow was viscous. This idea was put on solid
ground by calculating the turbulent viscosity caused by thermalized
modes and confirmed numerically in high-resolution simulations of the
Euler equation in [15]. In these simulations, the energy that was ini-
tially concentrated at low wave numbers was found to cascade down to
larger wave numbers. A long transient was observed before the system
reached full thermalization (details are given in [6]). These results
were then extended to helical hydrodynamic flows [11]. Fig. 1 shows
the time-evolution of the energy and helicity spectra, compensated
by 𝑘5∕3, obtained by the truncated Euler dynamics (2) evolving from
a so-called ABC (Arnold, Beltrami and Childress) helical initial data
(see Ref. [11] for details). The figure, that is extracted from the data
of Ref. [11], clearly display cascade ranges followed by progressive
thermalized ranges similar to that obtained in Cichowlas et al. [10]
but here with the non zero helicity also cascading to the right.

2.2. An algorithm to generate absolute equilibrium

Absolute-equilibrium solutions have also been examined in com-
pressible flows. In Ref. [6] a stochastic process was constructed with
a probability distribution converging to the absolute equilibrium. This
construction is necessary in the case of compressible systems because,
2

r

Fig. 1. Compensated energy (∙ ∙ ∙) and helicity spectra (× × ×) with thermalized range
predictions (3) in solid lines and cascade range predictions in dotted lines. (a) 𝑡 = 4.8.
(b) 𝑡 = 7. (c) 𝑡 = 10. (d) 𝑡 = 19.8.

as the conserved energy is at least cubic in the field variables, the
associate absolute equilibrium is non-gaussian and cannot be trivially
generated as done above (see Eqs. (3)) in the case of incompressible
flows.

In the particular case of a canonical system with Hamiltonian given
by 𝐻(𝑝𝜇 , 𝑞𝜇) and canonical equations

�̇�𝜇 = 𝜕𝐻
𝜕𝑝𝜇

�̇�𝜇 = − 𝜕𝐻
𝜕𝑞𝜇

, (4)

the stationary probability corresponding to absolute equilibrium is
given by the Boltzmann weight

𝑃𝑠𝑡 = 𝑍−1 exp(−𝛽𝐻). (5)

In this case, the stochastic process with a probability distribution
converging to the absolute equilibrium is simply the gradient Langevin
dynamics

̇𝜇 = − 𝜕𝐻
𝜕𝑞𝜇

+
√

2
𝛽
𝜉𝜇1

�̇�𝜇 = − 𝜕𝐻
𝜕𝑝𝜇

+
√

2
𝛽
𝜉𝜇2 , (6)

with the white Gaussian forcing term 𝜉𝜇𝑠 (𝑡) satisfying

⟨𝜉𝜇𝑠 (𝑡)⟩ = 0

𝜉𝜇𝑠 (𝑡)𝜉
𝜈
𝑠′ (𝑡

′)⟩ = 𝛿(𝑡 − 𝑡′)𝛿𝑠𝑠′𝛿𝜇𝜈 . (7)

y considering the associated Fokker–Planck equation [16,17], it is
traightforward to show that the stochastic process defined in Eqs (6)
nd (7) admit the Boltzmann distribution (5) as a stationary probability.

.3. Thermalization in the Gross–Pitaevskii equation

The study of equilibrium properties and dynamics of the (truncated)
ross–Pitaevskii equation was motivated by our previously obtained
esults on the 3𝐷 incompressible Euler equation and was made possible,
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due to the cubic non-linearity of the Gross–Pitaevskii equation, by the
new compressible algorithms of Ref. [6].

We then clarified the previous results concerning the nature of the
phase transition that is present in the 3𝐷 Gross–Pitaevskii equation by
showing that it is a standard second-order transition [18]. Moreover,
we showed that the dynamics of thermalization presents a dispersive
bottleneck which slows down the thermalization [19]. We have also
shown that most of the standard mutual friction phenomenology ap-
plies to the interaction of vortices with the normal fluid present in the
finite temperature equilibrium. However, we found an exception to this
agreement, due to an effect caused by thermally induced Kelvin waves
which produce an anomalous translation velocity for vortex rings [20].
This latter result was found to depend solely on the hydrodynamic
effect of thermally excited Kelvin waves. These results have been re-
viewed in Ref. [21]. Later, an in-depth study of the 2𝐷 Gross–Pitaevskii
equation confirmed the slowing down of thermalization by a dispersive
bottleneck. Moreover, full thermalization was achieved and, consider-
ing finite size effects, the correlation functions and spectra were found
to be consistent with their non-trivial Berezinskii–Kosterlitz–Thouless
values [22]. A generalized framework was proposed in Ref. [23].
The standard framework was later applied to study finite-temperature
effects in helical quantum turbulence in Ref. [24]. Quantitative es-
timation of effective viscosity in quantum turbulence were given in
Ref. [25]. The method was applied in an astrophysical context to the
formation of compact objects at finite temperatures in a dark-matter-
candidate self-gravitating bosonic system in Ref. [26] and to quantum
walks in Ref. [27].

2.4. Applications of thermalization process to classical systems

Thermalization in magnetohydrodynamic systems were studied in
Ref. [29]. and [30]. Dynamo action by turbulence in absolute equilib-
rium was investigated in Ref. [31].

An effect, very similar to the slowing down of thermalization by a
dispersive bottleneck first noticed in Ref. [19], was also observed in a
model of (incompressible) classical turbulence in Ref. [32]. Statistical
reversals in two-dimensional confined turbulent flows were studied in
Ref. [33], with more general results reviewed in Ref. [34]. The thermal
equilibrium state of large-scale viscous flows forced at small scale
was investigated in Ref. [35,36]. Turbulent cascade, bottleneck, and
thermalized spectrum in hyperviscous flows were studied in Ref. [37].

Finally the algorithms of Ref. [6] were applied to point vortex
models in Refs. [38,39], in the context of Levy on-off intermittency.

2.5. Thermalization and tygers in the inviscid Burgers equation

The particular case of the inviscid truncated Burgers equation will
be examined in detail in Section 3 below in the context of time-
correlation functions and their crossover to Kardar–Parisi–Zhang scal-
ing when viscosity and noise are added to the inviscid Burgers equation.
However before doing this I think that it is important to mention
a recently discovered phenomenon that was dubbed as ‘‘tygers’’ in
studies of the two-dimensional Euler and the Burgers equations [40].
The curious fact is that the first ‘‘spurious’’ effects of thermalization in
physical space do not occur near the shock, but away from it. Sharp
localized structures, the so-called tygers, are formed. After collapsing,
thermalization starts to take place near the location of the tyger,
eventually expanding to the whole domain (see Fig. 2). The mechanism
behind the formation of a tyger has been identified as a resonant
interaction between fluid particles and truncation noise [40]. More
3

details are given in Ref. [28]. p
Fig. 2. Evolution of the numerical solution 𝑢(𝑥, 𝑡) of the inviscid Burgers equation with
spectral truncation performed at 𝑘 = 5461. The initial data is 𝑢(𝑥, 0) = cos(𝑥) and the
olution 𝑢(𝑥, 𝑡) is shown at different times: (a) 𝑡 = 1.0, (b) 𝑡 = 1.1, (c) 𝑡 = 3.0. The shock
s formed at 𝑡 = 1, and the tyger has developed and started to collapse at 𝑡 = 1.1. See
ef. [28] for more details.

. Crossover to Kardar–Parisi–Zhang scaling

This section is devoted to the collaboration that resulted in the
ublication of Ref. [7]. I first recall the basic definitions that relate
he 1D Burgers equation to the Kardar–Parisi–Zhang (KPZ) system.
hen, I discuss spectral truncation, conserved quantities and the corre-
ponding stationary probability. After a brief discussion of the physical
arameters the main results on the crossover are given.
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3.1. System definitions

Consider the generalized randomly forced 1𝐷 Burgers equation
(with spectral power-law forcing) which is defined by the following
stochastic process for the velocity field 𝑢(𝑥, 𝑡) (see Refs. [41–45]):

𝜕𝑡𝑢 + 𝜆𝑢𝜕𝑥𝑢 = 𝜈𝜕𝑥𝑥𝑢 +
√

𝐷𝜕𝑥𝑓, (8)

where 𝜆 is the coefficient of the nonlinear term, 𝜈 is the kinematic
viscosity, 𝐷 a diffusion coefficient and 𝑓 is a zero-mean Gaussian force
with variance

⟨𝑓 (𝑥, 𝑡)𝑓 (𝑥′, 𝑡′)⟩ = 2𝜋𝛿(𝑥 − 𝑥′)𝛿(𝑡 − 𝑡′). (9)

Defining the so-called interface height ℎ by

ℎ(𝑥, 𝑡) = ∫

𝑥

𝑥0
𝑢(𝑦, 𝑡)𝑑𝑦, (10)

where 𝑥0 plays the role of a (possibly time-dependent: see Ref. [46])
constant of integration (thus 𝑢 = 𝜕𝑥ℎ) we obtain the Kardar–Parisi–
Zhang (KPZ) equation [42,47–49] for ℎ which reads

𝜕𝑡ℎ + 𝜆
2
(𝜕𝑥ℎ)2 = 𝜈𝜕𝑥𝑥ℎ +

√

𝐷𝑓, (11)

where we have omitted a spatial constant in the noise term 𝑓 that
s needed for mathematical consistency [50] and can also be used to
bsorb the time-dependency of the integration constant in (10). In
he following, 2 particular cases are considered: (i) The deterministic,
nviscid 1𝐷 Burgers equation, with 𝜆 = 1, 𝜈 = 0, and 𝐷 = 0; (ii) the
inear Edwards–Wilkinson (EW) equation [51], with 𝜆 = 0, 𝜈 > 0 and
> 0. The general case is the 1D KPZ Eq. (11), with 𝜆 > 0, 𝜈 > 0 and
> 0.

.2. Spectral truncation and conserved quantities

Consider 2𝜋-periodic boundary conditions in 𝑥 and introduce the
ourier representation

(𝑥, 𝑡) =
∞
∑

𝑘=−∞
�̂�(𝑘, 𝑡) exp(𝑖𝑘𝑥). (12)

s 𝑢(𝑥, 𝑡) is real, its Fourier transform �̂�(𝑘, 𝑡) satisfies �̂�(−𝑘, 𝑡) = �̂�(𝑘, 𝑡)
(with complex conjugation shown by an overline). Using

𝑢2(𝑥, 𝑡)
2

= 1
2

∞
∑

𝑛,𝑝=−∞
�̂�𝑛−𝑝(𝑡)�̂�𝑝(𝑡)𝑒𝑖𝑛𝑥, (13)

the non-forced, non-viscous Burgers equation (Eq. (8) with 𝜈 = 0, 𝜆 = 1
and 𝐷 = 0) can be written as

𝜕𝑡�̂�(𝑘, 𝑡) = − 𝑖𝑘
2

∞
∑

𝑝=−∞
�̂�𝑘−𝑝(𝑡)�̂�𝑝(𝑡). (14)

q. (14) conserves the total energy

= 1
2𝜋 ∫

2𝜋

0

𝑢(𝑥, 𝑡)2

2
𝑑𝑥

= 1
2

∞
∑

𝑘=−∞
|�̂�(𝑘, 𝑡)|2. (15)

ntegration by parts of the nonlinear term in (8) shows that the integrals

𝑛(𝑡) = ∫

2𝜋

0
𝑢(𝑥, 𝑡)𝑛𝑑𝑥, (16)

re all conserved by the (untruncated) inviscid dynamics (14), with the
nergy (15) corresponding to the special case 𝑛 = 2.

Spectrally truncating this system amounts to imposing that, for 𝑘 >
max, �̂�(𝑘, 𝑡) = 0 and 𝜕𝑡�̂�(𝑘, 𝑡) = 0. Namely, we introduce the Galerkin
rojector  which reads in Fourier space
4

G[�̂�𝑘] = 𝜃(𝑘max − |𝑘|)�̂�𝑘, (17)
here 𝜃(𝑘) = 1, if 𝑘 ≤ 𝑘max and 𝜃(𝑘) = 0, if 𝑘 > 𝑘max. Thus, truncation
mounts to replacements 𝑢 ∶= G[𝑢], 𝑢𝜕𝑥𝑢 ∶= G[𝑢𝜕𝑥𝑢] and 𝑓 ∶= G[𝑓 ]

in Eq. (8), thus reducing (14) to a finite number of ordinary differential
equations.

Applying the replacements, the spectrally truncated version of (14)
yields

𝜕𝑡�̂�(𝑘, 𝑡) = 𝑘(�̂�), (18)

where the nonlinear truncated term 𝑘(�̂�) is given by:

𝑘(�̂�) = − 𝑖𝑘
2
∑

𝑝,𝑞
𝛿𝑘,𝑝+𝑞𝜃(𝑘max − |𝑘|)𝜃(𝑘max − |𝑝|)𝜃(𝑘max − |𝑞|)�̂�𝑝�̂�𝑞 , (19)

(𝛿 denotes the Kronecker symbol).
It is easy to check that the nonlinear term (19) satisfies the following

relations

0 = 0(�̂�),

0 =
∑

𝑘
�̂�−𝑘𝑘(�̂�),

0 =
∑

𝑘,𝑝,𝑞
𝛿−𝑘,𝑝+𝑞𝜃(𝑘max − |𝑝|)𝜃(𝑘max − |𝑞|)�̂�𝑝�̂�𝑞𝑘(�̂�). (20)

Thus, only three of the conservation laws (16) survive Galerkin trunca-
tion and

𝑃 = �̂�0,

𝐸 = 1
2

𝑘max
∑

𝑘=−𝑘max

|�̂�(𝑘, 𝑡)|2, and

=
∑

𝑘,𝑝,𝑞
𝛿−𝑘,𝑝+𝑞𝜃(𝑘max − |𝑘|)𝜃(𝑘max − |𝑝|)𝜃(𝑘max − |𝑞|)

�̂�𝑘�̂�𝑝�̂�𝑞 , (21)

re still exactly conserved after truncation.
The conserved quantities 𝑃 and 𝐸 are respectively the momentum

nd the energy of the system. The third surviving conserved quantity
can be used to provide an explicit Hamiltonian formulation of

he truncated system and is known to play a role in thermalization
ynamics only for very particular choices of initial conditions [52].

Standard Fourier pseudospectral method with dealiasing performed
y the 2∕3 rule are identical to a spectral Galerkin method (see, for
xample, Ref. [8]). Using 𝑁 collocation points, spectral truncation must
e performed for 𝑘 > 𝑘max = ⌊𝑁∕3⌋, where ⌊⋅⌋ denotes the floor
unction. Note that with this dealiasing choice, the third conserved
uantity 𝐻 must be evaluated as G[𝑢G[𝑢2]].

.3. Stationary probabilities

The nonlinear truncated term (19) obeys the Liouville property

𝑘

𝜕𝑘(�̂�)
𝜕�̂�𝑘

= 0. (22)

It is generally argued (see e.g. Refs. [1,4,5]) in the case of absolute equi-
librium of the (inviscid deterministic 1𝐷 truncated) Burgers equation
that the microcanonical distribution

𝑃mc[𝑢] = 𝑍−1
mc𝛿(𝐸(𝑢) − 𝐸), (23)

when the number of degrees of freedom 2𝑘max + 1 is large enough, can
be well approximated by the canonical distribution

𝑃sta[𝑢] = 𝑍−1
c 𝑒−𝛽𝐸 , (24)

where 𝑍mc and 𝑍c denote normalization factors. A more direct way
to proceed is to introduce the Liouville equation for the probability
P
[

{�̂�𝑘, �̂�∗𝑘}0<𝑘≤𝑘max

]

,

𝜕P
𝜕𝑡

=
∑ 𝜕

𝜕�̂�
[

−𝑘(�̂�)P
]

+ 𝑐.𝑐 , (25)

0<𝑘≤𝑘max 𝑘
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where �̂�∗𝑘 = �̂�−𝑘 is considered as an independent variable and 𝑐.𝑐
denotes a complex conjugation. Note that there is only one independent
variable at 𝑘 = 0 with trivial dynamics as the corresponding nonlinear
term vanishes (see the first of Eqs. (20)).

It follows directly from the conservation of energy that (25) admits
(24) as a stationary solution.

Note that the stationary distribution (24) is a white noise in space
for 𝑢(𝑥) and therefore a Brownian process for ℎ(𝑥).

In both cases EW (𝜆 = 0, 𝜈 > 0 and 𝐷 > 0) and KPZ (𝜆 > 0, 𝜈 > 0 and
> 0) the probability distribution P of the stochastic process defined

y the equations. (8)–(9) and spectral truncation (17) can be shown to
bey the following Fokker–Planck equation [16,17]

𝜕P
𝜕𝑡

=
∑

0<𝑘≤𝑘max

𝜕
𝜕�̂�𝑘

[

−(𝜆𝑘(�̂�) − 𝜈𝑘2�̂�𝑘)P +𝐷𝑘2 𝜕P
𝜕�̂�∗𝑘

]

+ 𝑐.𝑐 . (26)

Note that (24) is also a stationary solution of (26). Indeed, the
nonlinear term of the Fokker–Planck equation can be treated exactly
like its counterpart in the Liouville Eq. (25); the remaining terms also
vanish for the stationary distribution (24), because, at equilibrium, we
must have 𝜈𝑘2�̂�𝑘 − 𝛽𝐷𝑘2�̂�𝑘 = 0, from which we obtain

𝐷 = 𝜈
𝛽
. (27)

Defining the r.m.s. velocity 𝑢rms by averaging over the stationary
distribution (24)

⟨𝐸⟩ =
𝑢2rms
2

=
𝑘max + 1

𝛽
, (28)

(see Eqs. (15) and (17)) we find that

𝛽 =
2(𝑘max + 1)

𝑢2rms
, (29)

𝐷 =
𝜈𝑢2rms

2(𝑘max + 1)
. (30)

These last relations determined the equilibrium probability. Thus,
the non-trivial aspect of the dynamics concerns the temporal correla-
tion functions

𝛤 (𝑘, 𝜏) = ⟨�̂�∗𝑘(𝑡)�̂�𝑘(𝑡 + 𝜏)⟩𝑡. (31)

In the KPZ case, with the Fokker–Planck Eq. (26), it is well known [41,
42] that the existence of a fluctuation dissipation theorem ensures that
the associated response function has the same time-scale characteristic
as the equilibrium time correlation function. The same fluctuation–
dissipation relation (with statistical averaging on the initial condi-
tions) [53] also applies in the inviscid and noiseless case (25).

3.4. Algorithms and physical parameters

Details on algorithms: the pseudospectral method, time stepping
and averaging method are given in Ref. [7].

As 2𝜋-periodic boundary conditions are used, the largest scale 𝐿 in
ur simulations is always fixed at 𝐿 = 2𝜋. The smallest available scales
re resolution-dependent and are related to the largest wave number
max = ⌊𝑁∕3⌋ (which is equivalent to the inverse of the size of the
patial mesh 𝛥𝑥 = 2𝜋∕𝑁 , where 𝑁 indicates the resolution). Thus, a
iven calculation is parameterized by 𝑢rms, 𝑘max and 𝜈.

The initial data used to start time integrations is always set to be
random gaussian field (see (24) and (28)) and the same 𝑢rms is used

o set 𝐷 to its viscosity and resolution dependent value (30). Thus, the
ase 𝜈 = 0 (and 𝐷 = 0) amounts to integrating the inviscid truncated
urgers equation from an initial conditions of absolute equilibrium
orresponding to 𝑢rms. When 𝜈 is non-zero, the full KPZ system (9)
with 𝜆 = 1) is integrated, also starting from the same equilibrium
istribution.
5

Fig. 3. Crossover in the scaling of the decorrelation time 𝜏 1
2

compensated by 𝑘3∕2:
𝑘3∕2𝜏 1

2
versus 𝑘. Red markers correspond to the EW to KPZ transition: 𝜈 = 2.4 × 10−2:

+, 𝜈 = 1.2 × 10−2: o, 𝜈 = 6.0 × 10−3: asterisk and 𝜈 = 3.0 × 10−3: square. Green markers
orrespond to the KPZ to inviscid transition: 𝜈 = 1.5 × 10−3: +, 𝜈 = 7.5 × 10−4: o,
= 3.8 × 10−4: asterisk, 𝜈 = 1.9 × 10−4: square, 𝜈 = 9.4 × 10−5: diamond, 𝜈 = 4.7 × 10−5:
entagram, 𝜈 = 2.3 × 10−5: hexagram, and 𝜈 = 0: cross. Scaling laws are indicated by
olid lines: EW 𝑘−2 and KPZ 𝑘−3∕2. The new inviscid 𝑘−1 scaling is denoted by a dashed
ine. Runs performed with 𝑘max = 341 and 𝑢rms = 1. (For interpretation of the references
o colour in this figure legend, the reader is referred to the web version of this article.)

.5. Scalings and numerical determination of crossover behaviour

We now introduce a scale-dependent Reynolds number: in the in-
iscid limit, the typical relaxation time near the absolute equilibrium
an be studied conveniently via the scale-dependent correlation time
1∕2(𝑘), which can be computed from the time-dependent correlation
unction (31) by solving 𝛤 (𝑘, 𝜏1∕2) = 𝛤 (𝑘, 0)∕2. It is known to scale
s 𝜏1∕2(𝑘) ∼ 𝑘−1 [54–56]. Note that the same 𝑘−1 scaling law is
nown to take place in the truncated 3𝐷 Euler equation [10]. Thus
1∕2(𝑘) cannot be simply related to an eddy turnover time defined
rom the equilibrium energy spectrum that scales as 𝐸(𝑘) ∼ 𝑘𝑑−1 in
-dimensions.

As demonstrated above (see (26)), the 1𝐷 KPZ equation admits the
ame exact equilibrium probability distribution as the inviscid Burgers
quation However, the 1𝐷 KPZ correlation time around equilibrium
s known to have a 𝑘−3∕2 scaling. Thus two different time-correlation
calings 𝑘−1 and 𝑘−3∕2 around the same equilibrium are expected for the
nviscid truncated Burgers equation and the KPZ equation. Also there is
third (trivially linear) viscous scaling: the EW 𝑘−2 scaling that arises
hen the effect of the nonlinear term is negligible.

In a general case, because of renormalization group arguments [41,
2], we expect to find the KPZ scaling of the correlation time in the
imit of the large spatial scales. However, the speed of this approach is
xpected to depend on the value of small-scale parameters. Defining
he Reynolds number at wave number 𝑘 by 𝑅𝑒(𝑘) = 𝑢rms∕(𝜈𝑘), The
eynolds number at truncation scale is given by 𝑅min = 𝑅𝑒(𝑘max):
min = 𝑢rms∕(𝜈𝑘max) or

min =
3
𝑁𝜈

𝑢rms. (32)

Thus, we expect to see EW scaling when 𝑅min ≪ 1 and recover the
inviscid truncated Burgers case in the limit 𝑅min → ∞ that corresponds
to 𝜈 = 0. Fixing the time-scale by setting 𝑢rms = 1, we now study the
crossover in terms of the dimensionless parameter 𝑅min by varying 𝜈.

The crossover behaviour is clearly visible in Fig. 3 which shows
the correlation time compensated by 𝑘3∕2, so that the KPZ scaling
corresponds to a horizontal line. The red markers correspond to the
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m
v
n
𝑅

EW to KPZ transition with different values of viscosities in geometric
progression corresponding to Reynolds numbers at truncation scale:
𝑅min = 0.12, 𝑅min = 0.24, 𝑅min = 0.48 and 𝑅min = 0.96. The green

arkers correspond to the KPZ to inviscid transition, with different
iscosities, also in geometric progression corresponding to Reynolds
umbers: 𝑅min = 1.96, 𝑅min = 3.91, 𝑅min = 7.71, 𝑅min = 15.4, 𝑅min = 31.2,
min = 62.3, 𝑅min = 124.6 and 𝑅min = ∞. The EW 𝑘−2 scaling law and

the KPZ 𝑘−3∕2 scaling are indicated by solid lines and the inviscid 𝑘−1

scaling scale is indicated by a dotted line.

4. Conclusion

After reviewing the collaborations that went on during a decade and
finally led to the joint work that was published in Ref. [7], I gave a short
description of the main result of this work.

We found a new crossover, governed by the truncated scale
Reynolds number 𝑅min, towards the inviscid state where the correlation
time scales as 𝑘−1. This new scaling corresponds to the absolute
equilibrium solution of the inviscid and noiseless Burgers equation. To
address this new scaling by a renormalization group analysis would
require to find, in addition to the known [42] KPZ stable fixed points
and EW unstable fixed points, a new unstable fixed point corresponding
to an inviscid 𝑅min = ∞ (or 𝜆 = ∞) value of the parameters. This point
is left for further work.
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