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Abstract
In this work, we first briefly review some of the mutual friction effects on vortex 
lines and rings that were obtained in the context of the truncated Gross–Pitaevs-
kii equation in references Krstulovic and Brachet (Phys Rev E 83(6):066311, 2011; 
Phys Rev B 83:132506, 2011), with particular attention to the anomalous slowdown 
of rings produced by thermally excited Kelvin waves. We then study the effect of 
mutual friction on the relaxation and fluctuations of Kelvin waves on straight vor-
tex lines by comparing the results of full 3D direct simulations of the truncated 
Gross–Pitaevskii equation with a simple stochastic Local-Induction-Approximation 
model with mutual friction and thermal noise included. This new model allows us to 
determine the mutual friction coefficient � and �′ for the truncated Gross–Pitaevskii 
equation.

Keywords Superfluidity · Quantum vortices · Mutual friction · Kelvin waves

1 Introduction

Our knowledge and understanding of the physics of superfluid helium and quantum 
turbulence has greatly progressed [1]. However, at present, there is no single theory 
that comprehensively describes all the systems and can predict the observed effects 
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across all length and time scales. Therefore, much of the progress in this field relies 
on phenomenological models, which may be better suited for certain types of prob-
lems than others, and are of several types.

• The phenomenological two-fluid model, proposed independently by L. Tisza and 
L. Landau, considers the fluid as a mixture of two components: the superfluid 
and the normal fluid. It successfully describes many flow properties of superfluid 
helium, including the propagation of second sound. However, it does not account 
for the presence of quantised vortices, which are an important feature of quan-
tum flows, and were experimentally discovered to have a circulation of h/m by 
Vinen in 1961 [2].

• An extension of the two-fluid model is the Hall-Vinen-Bekharevich-Khalatnikov 
model [3–5], which includes the effect of interactions between quantised vorti-
ces and the normal fluid through a mutual friction term. However, this model 
ignores the distinction between individual vortices and only considers length 
scales larger than the mean separation between vortices, making it an effective, 
coarse-grained model suitable for describing superfluid turbulence at low Mach 
numbers.

• The vortex filament model [6, 7] overcomes some of the limitations of the two-
fluid and HVBK models by treating the quantised vortices as filaments in three 
dimensions and evolving them under the Biot-Savart law plus a mutual friction 
term that mimics the coupling between the normal and superfluid components. 
In this model, quantum vortex reconnection is implemented by an ad hoc algo-
rithm and the normal fluid is assumed as given and quantum vortices do not 
modify it.

• The self-consistent vortex filament and Navier–Stokes models [8–11]. This 
approach allows to account for the mutual interaction of vortices and the normal 
fluid.

• Finally, at zero or near-zero temperatures, and for weakly interacting bosons, the 
Gross–Pitaevskii (GP) equation provides a good hydrodynamical description of a 
quantum flow, that naturally includes quantum vortices as exact solutions which 
can reconnect.

A problem with the GP model is that including finite temperature effects can be 
difficult [12–15]. Note that, to the best of our knowledge, only a few attempts [16, 
17] have been made to self-consistently couple the Gross–Pitaevskii equation to a 
Navier-Stokes description of the normal fluid.

In the present study, a minimalistic approach is used by considering classical field 
models, which involve spectrally truncating the GP Eq. [18]. Long time integration 
of the truncated system results in microcanonical equilibrium states that can capture 
a condensation transition, which has been previously demonstrated [19]. The same 
transition was later reproduced using a grand-canonical method, where it was shown 
to be a standard second-order �-transition [20]. This approach also correctly cap-
tures dynamical counterflow effects on vortex motion, such as mutual friction and 
thermalisation dynamics, which have been investigated in previous studies [20, 21].
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This manuscript begins by offering a concise review of the mutual friction effects 
on vortex lines and rings, that were observed in our previous numerical studies. Subse-
quently, we present new, original results that are obtained by performing full 3D simu-
lations of the truncated Gross–Pitaevskii equation. Focusing on the behaviour of vor-
tex lines, these results are then compared to those derived from a simplified stochastic 
Local-Induction-Approximation model. This paper is structured as follows: In Sect. 2, 
we provide a detailed explanation of the GP model and its numerical implementation. 
Specifically, in Sect. 2.1, we discuss the basic zero-temperature GP theory and its con-
served energies. We also introduce and discuss the properties of Kelvin waves propa-
gating along quantum vortices. In Sect. 2.2, we review our spectral truncation methods 
for incorporating finite-temperature effects, which were developed in reference [20]. 
We demonstrate the equivalence between the micro-canonical and canonical statistical 
ensembles in Sect. 2.3. Section 3 reviews our previous findings on mutual friction in 
lines and rings, as presented in references [22] and [20]. Specifically, standard effects 
are found for lines in Sect. 3.1, while rings are shown to undergo an anomalous slow-
down, produced by thermally excited fluctuating Kelvin waves, in Sect. 3.2. Our new 
results on fluctuations of Kelvin waves and mutual friction in the spectrally truncated 
Gross–Pitaevskii model are presented in Sect. 4. We recall the simple zero-temperature 
LIA model in Sect. 4.1. We present direct simulations of the finite-temperature spec-
trally truncated GP model in Sect. 4.2. Noise and mutual friction terms are added to 
the simple zero-temperature LIA model in order to generate KW fluctuation in a Lan-
gevin effective model in Sect. 4.3. We relate the observed truncated GP fluctuation and 
relaxation to the simple Langevin effective model in Sect. 4.4. Finally, our results are 
discussed and some conclusions are given in Sect. 5.

2  Finite Temperature States in Truncated Gross–Pitaevskii Equation

2.1  The Basic GPE Model

The GP equation [23, 24] is the partial differential equation for the system’s (complex) 
wave-function � that reads

It describes the dynamics of a zero-temperature dilute superfluid BEC, m is the 
mass of the bosons, g = 4𝜋ã�2∕m , ( ̃a is the s-wave scattering length). Equation 
(1) admits three conservation laws corresponding to the total (extensive) number 
of particles Np = ∫

V
n(x) d3x , the total energy E = ∫

V
e(x) d3x and the momentum 

P = ∫
V
P(x) d3x , with respective (intensive) densities:

(1)iℏ
��

�t
= −

ℏ2

2m
�
2� + g|�|2� .

(2)n =|�|2,

(3)e =
ℏ2

2m
|∇�|2 + g

2
|�|4
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where the over-line denotes the complex conjugate.
When no zeros of � are present, Eq. (1) can be easily mapped into hydrodynamic 

equations of motion for a compressible irrotational fluid using the Madelung trans-
formation given by

where �(x, t) is the fluid density, and �(x, t) is the velocity potential such that the 
fluid velocity is v = �� . The Madelung transformation is singular on the zeros of 
� , which can correspond to topological defects for the phase of the wave-function.

In the absence of vortices, Eq.  (1) can be linearised around a constant state 
� = A0 . One obtains the Bogoliubov dispersion relation

The sound velocity is thus given by c =
√
g�A0�2∕m , with dispersive effects taking 

place for length scales smaller than the coherence length defined by

� is also proportional to the radius of the vortex cores [25, 26]. When no vortex is 
present, the GP dynamics is similar to the compressible Euler dynamics, but with 
the addition of small-scale dispersive effects. These dispersive effects are enough to 
not allow singularities that are present in the Euler case [27]. In general, the 3D GPE 
is known to have regular solutions [28].

When quantum vortices are present, the velocity field can be directly obtained as

The flow matches the behaviour of a classical, ideal, and compressible potential 
fluid, except at the topological singularities: the so-called quantum vortex lines 
with quantised Onsager-Feynman velocity circulation given by Γ = ∮

C
v(�) d� =

h

m
 , 

where v is the superfluid velocity. The vorticity � = ∇ × v of the flow is thus given 
by

(4)P =
iℏ

2

(
��� − ���

)
,

(5)�(x, t) =

√
�(x, t)

m
exp

[
i
m

ℏ
�(x, t)

]
,

(6)�B(k) =

√
gk2|A0|2

m
+

ℏ2k4

4m2
.

(7)� =

√
ℏ2∕(2gm|A

0
|2);

(8)v =
P

n
,

(9)�(r) = Γ∫ d�
ds�

d�
�(3)(r − s

�(�)),
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where s(�) is the position of the vortex lines and � the arc-length. Note that the vor-
ticity is non-zero although v = �� , because the phase is not singled value due to the 
topological defects produced by the zeros of �.

The simplest hydrodynamic excitations of a quantum vortex are dispersive heli-
coidal perturbations of the filament, known as Kelvin waves [24, 29]. They were first 
studied by Lord Kelvin in 1880 [30] using the incompressible Euler equations. In 
the case of a hollow vortex core, such waves propagate with the dispersion relation

where k is the wavenumber, a0 is a constant of the order of the vortex core radius, 
�E ≈ 0.5772 is the Euler-Mascheroni constant, and K0 and K1 are the modified Bes-
sel functions. Note that their frequencies have the opposite sign with respect to the 
circulation Γ.

In the case of the GP model, the dispersion relation was first derived in the limit 
a0k ≪ 1 by Pitaevskii [24] and then improved by P.H. Roberts [31]. Robert’s work 
allows to fix the constant of the core value to a0 = 1.1265� . However, P.H. Roberts 
also showed that in the opposite limit of large wave vectors, the vortex wave disper-
sion relation scales as k2 , which is not in agreement with the scaling �KW

k
∼ k1∕2 

for large k. In order to conciliate both scalings, reference [32] proposed a fit that 
matches both scaling laws. Such a fit was useful to perform analytical calculations 
and to analyse data. The whole dispersion relation of the GP is well represented by

where � 1

2

= −0.20 and �1 = 0.64 are two fitting parameters. The last term of the 
expansion is fixed to match the a0k ≫ 1 GP asymptotic limit. Finally, note that in the 
simplest KW description given by the Local-Induction-Approximation (LIA) [33] 
(see also Sect. 4.1), the log-term is ignored and treated as a constant.

Figure  1, reproduced from reference [32], shows the measured KW dispersion 
relation in GP simulations and different theoretical predictions.

(10)𝜔KW
k

=
Γ

2𝜋a2
0

⎛
⎜⎜⎝
1 ±

�
1 + ka0

K0(ka)

K1(ka0)

⎞
⎟⎟⎠
a0k≪1

≈ −
Γ

4𝜋
k2
�
ln

2

a0k
− 𝛾E

�
,

(11)�GP
k

= �KW
k

×
[
1 + � 1

2

(a0k)
1∕2 + �1(a0k) +

1

2
(a0k)

3∕2
]
,

Fig. 1  Figure reproduced from 
reference [32]. (a) Kelvin wave 
dispersion relation obtained 
from GP simulations. All 
theoretical predictions are also 
displayed for comparison. (b) 
A zoom for k𝜉 ≪ 1 where the 
logarithmic correction can be 
appreciated. Details on the 
numerical simulations can be 
found in [32]
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2.2  Truncation and Conserved Quantities

The truncated Gross–Pitaevskii (TGP) equation is obtained from the GP model 
by truncating the Fourier transform of the wave-function � : �̂�

k
≡ 0 for |k| > kmax 

[18, 19]. Introducing the Galerkin projector PG that reads in Fourier space 
PG[�̂�k

] = 𝜃(kmax − |k|)�̂�
k
 with �(⋅) the Heaviside function, the TGP equation 

explicitly reads

 

The truncation of the GP equation preserves its Hamiltonian structure. The corre-
sponding Hamiltonian is HTGP = ∫ PG

[
ℏ2

2m
|∇�|2 + g

2

(
PG[|�|2])2

]
d3x . The outest 

projector can be omitted if we assume that initially PG� = � . Equation (12) can be 

thus rewritten in the canonical way as iℏ��

�t
=

�HTGP

��∗
 . It follows that energy and mass 

are conserved by (12) as the time and U(1) invariances are preserved in HTGP Con-
servation of momentum is also preserved when standard Fourier pseudo-spectral 
methods are used, provided that they are dealiased using the 2/3-rule 
( kmax = 2∕3 ×M∕2 [34] at resolution M). In this scheme, to achieve conservation 
mass and momentum are, respectively, evaluated as in (2), (4) and the energy (3) 
must be evaluated as in e = ℏ2

2m
|∇�|2 + g

2
[PG|�|2]2 . Note that global momentum 

conservation is mandatory to correctly describe vortex-normal fluid interactions. 
When the nonlinear term in Eq. (12) is written, as in [19], PG[|�|2�] momentum 
conservation requires that the dealiasing must be performed at kmax = M∕4 (see ref-
erence [20] and [35] for details).

Note that when the wavefunction � is an analytical function (or more regular), 
it decreases very rapidly in Fourier space with the magnitude of the wave number 
(typically exponentially or faster). In that case, and provided that kmax is much larger 
than the largest active wavenumber of � , the GP and TGP equations coincide. This 
criterion is called spectral accuracy and should be fulfilled while solving a partial 
differential equation. On the contrary, the TGP model allows for solutions which do 
not decay at large wave numbers, which typically correspond to the thermal states 
discussed in the next section. As fields do not decrease for large wave numbers, they 
are not differentiable at any point. Formally speaking, the TGP is not a partial differ-
ential equation but a high-dimensional ordinary differential equation.

2.3  Equivalence Micro‑ and Grand‑Canonical Thermalisation

Microcanonical equilibrium states are produced by integration of TGP equation for 
very long times [19, 36, 37]. On the other hand, grand-canonical states are defined 
by the probability distribution

(12)iℏ
��

�t
= PG

[
−
ℏ2

2m
�
2� + gPG[|�|2]�

]
.



1 3

Journal of Low Temperature Physics 

directly expressed in terms of the temperature �−1 and the chemical potential � 
(instead of the energy E and the number of particles N in a microcanonical frame-
work). These states can be efficiently obtained by constructing a stochastic pro-
cess that converges to a realisation with the probability ℙst[�] [20]. This process is 
defined by a Langevin equation consisting in a stochastic Ginzburg-Landau equation 
(SGLE):

where the white noise �(x, t) satisfies ⟨� (x, t)�∗(��, t�)⟩ = �(t − t�)�(x − �
�) , � is the 

inverse temperature and � the chemical potential. Using this algorithm in [20] the 
microcanonical and grand-canonical ensembles were shown to be equivalent and 
the condensation transition reported in [19, 36] identified with the standard second 
order �-transition.

When numerically simulating Eq. (14), � is adjusted to fix the density. The 
inverse temperature is normalised as � = N∕VT  , where N  is the total number of 
Fourier modes and V the system volume. With this choice of parametrization the �
-transition temperature T� is independent of N  . Data from SGLE and low-temper-
ature calculations obtained in reference [20] are shown in Fig. 2.

The temperature dependence of the different energies is also displayed in 
Fig. 2. Note that the first term in Eq. (3) that defines the energy can be decom-
posed (as done in [25, 26]) into incompressible Ei

kin
 , and compressible Ec

kin
 kinetic 

energies and into quantum energies Eq . The last term in Eq. (3) corresponds to 
the internal energy Eint . Observe that Ei

kin
 vanishes at temperatures T∕T𝜆 ≲ 1∕2 . 

At low temperature equipartition of energy between Ekin and Eq + Eint is apparent. 

(13)ℙst[�] = Z
−1 exp[−�E − �N)]

(14)ℏ
��

�t
= PG

[
ℏ2

2m
�
2� + �� − gPG[|�|2]�

]
+

√
2ℏ

V�
PG[�(x, t)],

Fig. 2  This figure, reproduced from [21], shows the temperature dependence of various energies: 
Ec
kin

 (stars), Ei
kin

 (diamonds), Ekin (circles), and Eq + Eint (pentagrams) at constant density. The insets 
show the temperature dependence of the condensate fraction |�

0
|2∕� (right) and the specific heat 

cp =
�H
�T

|

|

|

|p
 at a resolution of 1283 (left). Note that Ei

kin
 denotes the presence of vortices (see text). 

Details on the numerical simulations can be found in [21]
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Such a behaviour suggests that thermally excited quantum vortices are important 
for temperatures larger than T�∕2.

Adding −�n ⋅ P as a Lagrange multiplier to the grand-canonical distribution 
(13) and correspondingly a term iℏ �n ⋅ �� in (14) induces an asymmetry in the 
repartition of thermal waves and generates non-zero momentum states. These 
states do not generally correspond to a condensate moving at velocity �s = �n 
because �s is the gradient of a phase and takes discrete values for finite size sys-
tems. Equilibrium states with nonzero values of the counterflow w = �n − �s are 
generated in this way.

All the SGLE equilibrium used in this work has a condensate at rest ( �s = � ) 
and therefore �n = w.

3  Vortex Lines at Finite Temperature

In this section, we review the results on mutual friction obtained in references 
[20] and reference [22].

3.1  Mutual Friction in the Truncated Gross–Pitaevskii Model

We start by recalling the standard Hall-Vinen phenomenological model for the 
vortex line velocity vL [3, 4, 29] that reads:

where s′ is the tangent of the vortex line, vsl = vs + ui is the local superfluid velocity 
with ui the self-induced vortex velocity and �n the normal velocity. The mutual fric-
tion coefficients in Eq. (15) are typically written as � = B�n∕2�, �

� = B��n∕2� where 
B and B′ are order-one and weakly temperature-dependent.

In reference [22] we used the TGP model to study the effect of mutual friction 
on an array of alternate-sign straight vortices �lattice , which is an exact stationary 
solution of the GP equation (for details on this initial data, see [20] and also [38]). 
We set an initial condition where the vortices were separated by a distance L/2 (L 
being the system size) and thus they can be considered isolated for a large enough 
box. An equilibrium state �eq was also generated with the SGLE (14) with coun-
terflow vn perpendicular to the vortices. The initial condition � = �lattice × �eq 
was then evolved with the TGP equation.

Figure 3a displays 3D visualisations of the density at t = 0 and t = 100 , where 
the displacement of the lattice is apparent (figure reproduced from [22]).

The temporal evolution of the (parallel and perpendicular to vn ) position of a 
vortex (R∥,R⟂

) is presented in Fig. 3c for T = 0.2 T� , T = 0.4 T� and vn = 0.4 . The 
counterflow-induced vortex velocity clearly depends on the temperature. R∥ has a 
linear behaviour, that allows to directly measure the parallel velocity v∥ . The tem-
perature dependence of v∥∕vn is presented later on Fig. 5 for different values of 
vn and � . This behaviour is consistent with the standard phenomenological model 

(15)vL = vsl + ��� × (vn − vsl) − ��
�
� × [s� × (vn − vsl)],



1 3

Journal of Low Temperature Physics 

for the vortex line velocity vL (15), as Eq. (15) applied to a straight vortex with vn 
perpendicular to the vortex and vs = 0 yields �� = v∥∕vn.

3.2  Slowdown Effect on Vortex Rings Induced by Thermal Fluctuations

Let us now rapidly review the interaction of vortex rings and counterflow. The 
Biot-Savart self-induced velocity of a perfectly circular vortex ring of radius R is 
given by

where a is a core model-depending constant [29].
Equation (15) with vn perpendicular to the ring, and vs = 0 yields the radial 

velocity Ṙ = −𝛼(ui − vn) . Using the TGP model, Berloff and Youd [37] studied the 
finite temperature evolution of a ring without counterflow ( vn = 0 ) and observed a 
contraction of vortex rings compatible with (15). To study the influence of coun-
terflow, in reference [22] we prepared an initial condition � = �ring × �eq in the 

(16)ui =
ℏ

2m

C(R∕�)

R
, C(z) = ln (8z) − a

Fig. 3  The figure, reproduced from reference [22], displays three panels: a and b show the density dis-
tribution at t = 0 and t = 100 , respectively, for the lattice configuration (in red) with T = 0.4,T� and 
vn = 0.4 , where the blue clouds correspond to density fluctuations. Panel c shows the averaged positions 
(R∥,R⟂

) of a single vortex for different temperatures ( T = 0.2,T� and T = 0.4,T� ) and vn = 0.4 . The reso-
lution used in this figure was 643 . Details on the numerical simulations and method used can be found in 
[22]
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same way as above for the vortex lattice. The temporal evolution of the (squared) 
vortex length of a ring of initial radius R = 15� at temperature T = 0.4 T� and 
vn = 0 , 0.2 and 0.4 is reproduced in Fig.  4a. The Berloff-Youd contraction [37] 
is apparent in absence of counterflow (bottom curve). The temperature depend-
ence of the contraction, related to the � coefficient in Eq. (15), also quantitatively 
agrees with their published results (data not shown).

Fig. 4  Figure reproduced from reference [22]. a The (squared) length of a vortex ring at different values 
of counterflow vn as a function of time (temperature T = 0.4,T� and initial radius R = 15� ). b–c 3D visu-
alisations of a vortex ring ( R = 20� ) and density fluctuations at t = 18 , 19 with T = 0.4,T� and resolution 
643 . The same colour bar as in Fig. 3 is used. Thermally excited Kelvin waves can be seen. Details on the 
numerical simulations can be found in [22]

Fig. 5  This figure is reproduced from reference [22]. It shows the temperature dependence of the coun-
terflow-induced lattice velocity v∥∕vn (bottom) and ring slowdown ΔvL∕ui (top) obtained with vn = 0 . 
The dashed line represents the prediction of Eq. (15) with �� = 0.83�n∕2� , while the solid line shows 
the prediction of anomalous slowdown by Eq. (18) with R = 20� at various resolutions. Details on the 
numerical simulations can be found in [22]
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When the counterflow was large enough, a dilatation of vortex rings was 
instead observed (top curve in Fig.  4a). Such a dilatation (a hallmark of coun-
terflow effects) is expected [29] to correspond to a change of sign of vn − vsl in 
Eq. (15). The predictions of Eq. (15) unexpectedly turned out to be quantita-
tively wrong. Indeed, using Eq. (16) in the conditions of Fig.  4a one finds that 
vsl = ui = 0.39 which is significantly larger than normal velocity vn = 0.2 around 
which dilatation starts to take place (see the middle curve in Fig.  4a). Equa-
tion (15) prediction for the longitudinal velocity vL = (1 − ��)ui + ��vn was also 
unexpectedly found wrong. Using the value of �′ determined above on the vortex 
array, one finds vL ∼ 0.98ui and from Eq. (16) one finds for vL the value 0.38 that 
is larger than the measured value vL = 0.23.

This anomaly of the ring velocity vL is also present in the absence of counterflow 
( vn = 0 ) where Eq. (15) predicts that �′ should be given by ΔvL∕ui ≡ (ui − vL)∕ui . 
The temperature dependence of ΔvL∕ui , reproduced from [22], is displayed in Fig. 5 
(top curve). Observe that ΔvL∕ui is one order of magnitude above the transverse 
mutual friction coefficient �′ measured on the lattice.

This unexpected behaviour was related to the presence of thermally excited Kel-
vin waves in reference [22]. It was known that KWs present in vortex rings slow-
down the ring propagation velocity by a purely hydrodynamical effect [39, 40]. As 
KWs are naturally excited at finite temperatures, they thus could be used to explain 
this unexpected observed effect. We now reproduce the calculations of [22] of the 
thermally induced anomaly to the velocity va induced on a vortex ring by a single a 
Kelvin wave of (small) amplitude A and (large) wavenumber NK∕2�R obtained in 
the LIA [39] and Biot-Savart [40] frameworks. The translation velocity va obtained 
in the framework of LIA reads (see Eq. (26) of [39])

where ui is the (undisturbed) ring velocity (16).
The TGP model naturally includes thermal fluctuations that excite Kelvin waves, 

as apparent in Fig. 4b, c. We assume that the slowing down effect of each individual 
Kelvin wave is additive and that the waves populate all the possible modes. Kel-
vin waves being bending oscillations of the quantised vortex lines their wavenumber 
must satisfy k ≤ k� = 2�∕� . The total number of thermally excited Kelvin waves is 
thus NKelvin ≈ R k�.

The amplitude term A2N2
K
∕R2 in (17) can be obtained by simple equipartition 

arguments. The energy of a (perfect) ring is E =
2�2�sℏ

2

m2
R[C(R∕�) − 1] , with �s 

the superfluid density [29]. A Kelvin wave produces a variation of the ring length 
ΔL = �A2N2

K
∕R . Its energy can thus be estimated as ΔE =

dE

dR

ΔL

2�
. Assuming ΔE = �−1 

yields, at low temperature where �s ≈ � , A2N2
K
∕R2 = m2�−1∕�2�ℏ2RC(R∕�) . Note 

that this formula predicts a UV-convergent r.m.s amplitude that is in good agree-
ment with TGP data, with values small enough to avoid self-reconnections of the 
ring. Replacing A2∕R2 in Eq. (17), the dominant effect is obtained by summing up to 
NKelvin and it finally reads:

(17)va = ui(1 − A2N2
K
∕R2 + 3A2∕4R2)
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The thermally induced anomalous slowdown (18) is in good agreement with the 
TGP data displayed in Fig. 5.

4  Fluctuation and Relaxation of Kelvin Waves in Thermal Equilibrium

When the standard LIA description of Kelvin waves is used together with the Hall-
Vinen [3, 4] phenomenological description of mutual friction, the normal fluid 
velocity appears naturally as an external variable that is given independently of the 
vortex positions. We have seen that the TGP model naturally includes thermal fluc-
tuations that excite Kelvin waves. Such random thermal perturbations are physically 
expected to occur in nature and not only in the TGP model.

In this section, we review the description of KWs in the LIA model, their 
expected energy equipartition at finite temperatures, and build a simple Langevin 
model of the effect of thermal perturbations by including random fluctuations in the 
normal fluid velocity. We will be specially interested in the fluctuations and relaxa-
tion of thermally excited Kelvin waves.

4.1  Description of Kelvin Waves at T = 0 Using 
the Local‑Induction‑Approximation

The simplest description of Kelvin wave dynamics is given by the local induction 
approximation (LIA) [33], in which only local contributions of the Biot-Savart inte-
grals in the Schwarz vortex filament model [6, 7] are considered. In the zero-temper-
ature limit, the LIA equations are simply given by

where s denotes, as in (15), the parametrisation of a vortex line. The vortex circula-
tion is given by Γ and the constant Λ = log (�∕a0) , with � the inter-vortex distance 
and a0 the vortex core size.

In the particular case of small amplitude Kelvin waves, the vortex parametrisation 
takes a simpler form using Cartesian coordinates. For a vortex line aligned along the 
z-direction, the vortex can be parametrised as s(z) = (X(z),Y(z), z) . Furthermore, by 
introducing the complex amplitude s(z) = X(z) + iY(z) , and taking the limit of small 
amplitudes, the LIA equations become

Note that the previous equation is equivalent to the (linear) Schrödinger equation. In 
particular, note that in the LIA approximation, KWs have a dispersion relation

(18)
ΔvL

ui
≡ ui − va

ui
≈

�−1m2

�2�ℏ2C(R∕�)
k� .

(19)ṡ = −
ΓΛ

2𝜋
s
� × s

��

(20)iṡ = −
ΓΛ

4𝜋

𝜕2s

𝜕z2
.



1 3

Journal of Low Temperature Physics 

where k is the wave vector. Although the LIA equations fail to give the correct large-
scale asymptotic dispersion relation (10), it is a useful theoretical tool to perform 
analytical calculations and comparison with the GP model [32, 41].

The LIA equations have a Hamiltonian structure in which energy is proportional 
to the total vortex length. In the case of small KW amplitudes, the energy of the fila-
ment is given by

where ŝk is the Fourier transform of s(z), and for simplicity we have considered a 
periodic system in the z-direction.

At finite temperatures, and in the absence of external driving, one naturally 
expects that KWs will be in equilibrium with the thermal bath. More specifically, in 
the classical approximation, vortex line excitations should obey the Gibbs distribu-
tion {s(z)} ∼ exp {−HLIA∕T} , where T is the temperature of the thermal bath. As 
HLIA is quadratic in s, every Fourier mode will be Gaussian and will be in equiparti-
tion. It follows that the thermal KW spectrum is given by

The previous considerations are also valid using a more realistic description of lin-
ear KWs. For a different model, it is enough to replace �LIA

k
 by a more accurate 

expression of the KW dispersion relation, for instance, the one given by Eq. (11).

4.2  Finite‑Temperature Kelvin Wave Gross–Pitaevskii Simulations

In order to check prediction (23), we study the finite-temperature evolution of an 
initial non-equilibrium distribution of KWs using the TGP Eq.  (12). For a given 
temperature T, which value will be expressed in terms of the condensation transi-
tion temperature T� , we first prepare a thermal state � thermal . Then, we also prepare 
a wave function �KW containing four (to ensure periodicity) almost straight vortices 
satisfying

where �k are random phases and A is the KW amplitude. The initial condition is pre-
pared in the same manner as in [42]. Finally, the initial condition � = � thermal × �KW 
is evolved with the TGP Eq.  (12). During the evolution, we track the four vortex 
lines of the periodic box. In general, tracking KW requires high precision in order to 

(21)�LIA
k

= −
ΓΛ

4�
k2,

(22)HLIA =
Γ2Λ

4𝜋 ∫
||||
𝜕s

𝜕z

||||
2

dz = −Γ
∑
k

𝜔LIA
k

|ŝk|2,

(23)nk = |ŝk|2 + |ŝ−k|2 ∝ T

−Γ𝜔LIA
k

∼
T

k2
.

(24)sini(z) =

km∑
k=−km

Aeikz+i�k ,
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capture small fluctuations. In the case of GP (not truncated), one can use the regu-
larity of the field and a Newton–Raphson scheme to find the nodal lines of the wave 
function [42, 43]. This approach is particularly accurate in pseudo-spectral codes 
thanks to the spectral accuracy of such solvers. As for finite temperature states, the 
fields are not differentiable. This method and others based on interpolation are not 
thus applicable. Instead, in this work, we use a simpler scheme where the vortex is 
determined by finding the minimum the density, after filtering the fields to reduce 
small-scale fluctuations. As we will say later, this simple method allows for deter-
mining statistical quantities with good precision.

In the numerics, we use the pseudo-spectral code FROST [35] with a peri-
odic box of size L × L × 2 L using 128 × 128 × 256 collocation points and a 
Runge-Kutta-4 time-marching scheme. Thermal states are prepared at constant 
density � = 1 . At zero-temperature, the healing length is set to � = 1.5L∕128 . 
Furthermore, as the vortex filaments are highly fluctuating quantities, for 
each temperature studied in this work, we perform 27 different realisations 
to improve statistics. As the four vortices can be considered to be statistically 
independent, this results in a statistical ensemble of more than 100 vortex lines 
for each temperature. Finally, we prepare an out-of-equilibrium vortex con-
figuration �KW , with an almost straight vortex as in Eq. (24) with km = 20k0 , 
with k0 = �∕L . We filter the fields at wave number kf = 15k0 to track the vortex 
lines. The amplitude of the KWs is set to 5�∕

√
2.

Figure 6 displays the temporal evolution of the KW spectrum at a tempera-
ture T = 0.34T�.. Initially, the spectrum is flat and drops at k = 10k0 as set by the 
initial condition. During the time evolution we observe that the vortex spectrum 
relaxes towards the equilibrium spectrum (23), displayed by the green dashed 
line. Note that the LIA prediction provides a reasonable prediction for scaling 
for small k∕k0-scaling, but as k∕k0 increases, it deviates from 1∕�GP

k
 which repro-

duces well the data.
We have shown how a simple physical argument can predict the scaling of KW 

spectrum in equilibrium. However, in order to predict temporal dynamics, one needs to 
do further modelling. In the next section, we introduce a Langevin model that predicts 
the temporal behaviour of KWs close to equilibrium.

Fig. 6  Temporal evolution of the 
Kelvin wave spectrum nk . The 
initial condition is highlighted 
with pentagrams, and the cyan 
and green dashed line shows the 
LIA k−2 scaling and 1∕�GP

k
 pre-

diction (11). k0 is the smallest 
wavenumber of the simulation
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4.3  Stochastic LIA Equations for Finite Temperature Quantum Vortices

In vortex filament models, finite temperature effects are typically taken into account 
using the Hall-Vinen Eq. (15). In this framework, the LIA finite-temperature descrip-
tion is obtained by using the self-induced velocity vsl = −

ΓΛ

2�
s� × s�� . It reads

where we recall that � and �′ are the mutual friction coefficients and vn = (v1
n
, v2

n
, v3

n
) 

is the prescribed normal fluid. Note that in this model, thermal fluctuations are 
absent.

We consider now the case of vortex line close to equilibrium at small temperatures, 
for which Kelvin wave amplitudes and the normal fluid are both small. Similarly to the 
T = 0 case, the linear equations written in complex variables read

where U = v1
n
+ iv2

n
.

We now assume that thermal fluctuations are introduced in the system 
through the normal fluid. At low-temperatures, and within a classical approxi-
mation, the one time-statistics of the thermal bath is Gaussian and each Fourier 
mode of U can be assumed to be independent. Furthermore, in reference [44], 
it was shown that the correlation time of thermal states is of order �∕c , which 
is much smaller than typical large-scale KW periods. Under this assumption, it 
is natural then to assume that U is a white noise in time. Rewriting Eq. (26) in 
Fourier space, and incorporating the previous considerations, leads to the fol-
lowing stochastic local induction approximation (SLIA) equation

where � = (� + i(�� − 1))
ΓΛ

4�
 and �2 = (�2 + ��2)⟨�U�2⟩ . Note that � is a complex 

number and encompasses damping by mutual friction and oscillations due to KW 
dynamics. The amplitude of the noise is related to the normal fluid mean kinetic 
energy, which is proportional to temperature.

The complex Langevin Eq. (27) admits a simple solution in terms of the standard 
Wiener process Wt . It reads

(25)
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�2s

�z2
+ (i� + ��)U

(27)
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= − 𝛾k2ŝk + 𝜎 𝜁 (t)
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The above formula allows to directly compute the correlation function of KWs by 
simple algebra and using basic properties of the Wiener process. The correlation 
function is given by

Note that the equipartition spectrum (23) follows from the previous expression by 
taking t = t� → ∞

The previous expression relates fluctuations ( � ) and dissipation ( � ) of KWs in 
equilibrium.

More interesting, expression (31) gives an explicit formula for the correlation 
function

Assuming that at t = 0 all the KWs are in thermal equilibrium, formula (31) leads to

We expect then a decay rate given by the mutual friction coefficient � and a renor-
malisation of the KW frequency due to �′.

(31)

⟨ŝk(t)ŝ∗k (t
′)⟩ = ⟨ŝk(0)ŝ∗k (0)⟩e
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⟨�ŝk(0)�2⟩
.

(34)Ck(�) = e
−�

ΓΛ

4�
k2t

cos
[
(�� − 1)

ΓΛ

4�
k2t

]
.

Fig. 7  Equilibrium Kelvin wave correlation function (33) obtained using the TGP equation. left: Correla-
tion function at different temperatures for a fixed wave vector. left: Correlation function at different wave 
vectors for a fixed temperature. The dashed lines show the fit obtained using formula (35)
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Note that a more realistic description could be obtained by replacing the LIA dis-
persion relation �LIA

k
 by a more accurate KW dispersion in the same spirit of predic-

tions made in [32]. With such a change, Eq. (25) becomes a non-local partial differ-
ential equation (with Laplacian replaced by a non-local operator), but with a simple 
representation in Fourier space and all the previous calculations trivially follow.

4.4  Finite‑Temperature Equilibrium Kelvin Wave Correlation Function Using 
the Truncated Gross–Pitaevskii Model

We now study the correlation function (33) using the TGP equation. We use the 
same numerical setting of Sect. 4.2 and we compute the correlation function once 
the KWs have reached thermal equilibrium. The measured correlation functions for 
different temperatures and wave vectors are displayed in Fig. 7.

It is apparent from the figure that there is a clear temperature-dependent decay 
rate and a slowdown of the oscillation frequency. The quality of the data allows us 
to determine damping and frequency coefficients by fitting the temporal series with 
the fit

The resulting fits are also displayed in Fig. 7 in black dashed lines.

(35)Cfit
k
(�) = Ae−�kt cosΩkt.

Fig. 8  Equilibrium Kelvin correlation function (33) obtained using the TGP equation. left: Correlation 
function at different temperatures for a fixed wave vector. left: Correlation function at different wave 
vectors for a fixed temperature. The dashed lines show the fit obtained using formula (35) (factor 1/2 is 
arbitrary) and the LIA scaling k2
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In Fig. 8, we present the results of the fit.Figure 8a displays the coefficient �k for 
different temperatures. For comparison, we also plot the k2-scaling expected from 
the LIA model and Kelvin wave dispersion relation for GP KWs given by Eq. (11). 
A strong temperature dependence is observed, the higher the temperature, the larger 
the damping. Moreover, the scaling of �k seems in agreement with the SLIA predic-
tion (33). Similarly, Fig. 8b displays the measured frequencies Ωk . There is a small 
temperature dependence producing a slowdown of the frequency. In addition, it is 
clear that frequencies do not follow the LIA scaling, but they agree without adjust-
able parameters with the KW dispersion relation for the GP model. In Fig. 8c, d we 
show �k and Ωk normalised by �GP

k
 . We then define the measured GP mutual friction 

coefficients by averaging over wave vectors k∕k0 ∈ (2, 5) where curves are relatively 
flat. In addition, we average the ratio �k∕Ωk , that from Eq. (33) should be independ-
ent of the KW dispersion relation and equal to �∕(1 − ��) . Finally, the measured 
mutual friction coefficients are displayed in Fig. 9.

For comparison, we also plot the measured helium mutual friction coefficient 
taken from reference [45]. Helium and TGP mutual friction coefficient have been 
obtained at different temperature ranges. In the case of the TGP model, to perform 
the analysis carried out in this work at higher temperature is challenging, as thermal 
fluctuations become strong (including thermally excited vortices), which difficult the 
tracking of vortices.

The TGP-measured mutual coefficient � is remarkably of the same order of the one 
of helium, and it looks as a natural low-temperature continuation of the known (higher 
temperature) helium properties. On the contrary, the mutual friction coefficient �′ 
seems not to agree with helium. Figure 9b also displays data form Fig. 5 (in black).

5  Discussion and Conclusions

First, we briefly reviewed some of the mutual friction effects on vortex lines and 
rings that are obtained in references [20] and [22]. In particular we reviewed the 
anomalous slowdown of rings that is produced by thermally excited Kelvin waves. 

Fig. 9  Measured mutual friction coefficients obtained with the TGP model. We also plot the measured 
helium mutual friction coefficient taken from [45]. In figure (b), we also show the measured TGP friction 
coefficients for the case of the vortex lattice and a vortex ring presented in Fig. 9 (same markers)
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Then, we studied the effect of mutual friction and thermal noise on the relaxation 
of Kelvin waves on straight vortex lines by comparing the results of full 3D direct 
simulations of the TGP with a simple new LIA stochastic model with mutual fric-
tion and thermal noise included.

The new model allowed us to determine the mutual friction coefficient. By fit-
ting the simple Langevin model prediction (35) to the TGP Kelvin wave correla-
tion function shown in Fig. 8, we have successfully reproduced the TGP correlation 
functions.

The coefficients �k and Ωk obtained from the fit show a distinct temperature 
dependence, and the values of the measured mutual friction coefficient � are of a 
similar order of magnitude as those measured in superfluid helium. However, the 
value of the mutual friction coefficient �′ obtained from the fit deviates from the 
standard measurements. It is rather puzzling and important to note that the values of 
�′ obtained in the TGP context for the vortex ring (reviewed above in section 3) also 
differed significantly, suggesting that the geometry of the vortex configuration can 
affect the mutual friction coefficients. However, as there is no direct link between 
the two methods of determining �′ , this may just be a coincidence.

Finally, let us recall that to correctly describe superfluid liquid Helium, with a 
good equation of state and a dispersion relation with rotons, the GPE needs to be 
extended by including non-local and higher order nonlinear terms [46–48]. It is an 
open problem that is left for further study to see if such a more quantitative descrip-
tion still lead to the same results: a ’good’ � and a ’bad’ �′.
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